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Normalizing Flows
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Normalizing direction → density estimation

Sampling direction
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where f(x) goes in the “normalizing” direction to 
the z latent space.

We can both sample and evaluate the density

- If the p.d.f in the latent space is tractable 
(multidim gaussian, uniform) 

- if the transformation is invertible
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Expressiveness: transformations are 
composable!

From the rules of change of integration variables

Requirement:  the jacobian of the transformation must 
be computed in an efficient way                        
→ this defines the possible implementation of the flows 

Normalizing flows

f(x)

f-1(z)
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We need to model non-factorizable p.d.f: 
dimensions depend non linearly on each other

DNNs are not invertible:  use DNN as conditioners            

which parametrize invertible transformations
for which we have analytical inversion

Choose a structure with an efficient jacobian.

The transformation         can be: 

How to build a flow
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affine: μ, α parameters from the DNN 
conditioner

or spline based:  model N knots with the DNN conditioner,  
which creates a spline to transform differently each 
dimension → very expressive 

arxiv1705.07057 

arxiv1906.04032 

arxiv1912.02762

latent space

output space

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1906.04032.pdf
https://arxiv.org/pdf/1912.02762.pdf
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Conditioners

5
arxiv1705.07057 

To model complex relations in the p.d.f. phase-space, the dimensions must interact 
between each other.

Two strategies to build easily computable Jacobians 

- coupling transformations:  split the space in two and  make one group 
depends on the other (then rotate)

- autoregressive transformation:   dimension Xj  is conditioned only by X0<i<j

In both cases you get a lower-triangular Jacobian The logdet is just the sum of the diagonal terms

arxiv1912.02762

https://arxiv.org/pdf/1705.07057.pdf
https://arxiv.org/pdf/1912.02762.pdf
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Coupling structure
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Coupling layers

Z1 Z2

x1 x2

Z1 Z2

x1 x2

-1

direct inverse

- Split the input space in half and  make one 
group depends on the other

- Shuffle the grouping (permute or rotate)

- Stack many layers to model all the 
correlations

Pros:

- Fully parallelizable over dimensions in both 
directions:   1 pass computation, super fast 
on GPU

- Fast to use in both sampling and density 
estimations

Cons: 

- Many layers are needed to fully model the 
correlations in the input space D dimensions. 
(at least D layers usually)
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Autoregressive structure 

- dimension Xk  is conditioned only by X0<i<k

- Implemented with Masked Autoencoders (MADE): 

- Fully connected neural networks with masked 
applied at each layer to create the autoregressive 
structure

Pro:

- More powerful than coupling strategy:

- using few stacked layers all the dimensions talks to 
each other

Cons:

- Parallel in one direction, D steps in the version (D = 
dimension of the input space)

- Need to choose  the direction of the implementation if we 
need faster sampling (IAF arxiv1606.04934) or faster 
density estimation (MAF arxiv1705.07057) 7

How to create an autoregressive function with a feed-forward 
neural network (MADE)

Autoregressive

direct inverse

https://arxiv.org/pdf/1606.04934.pdf
https://arxiv.org/abs/1705.07057
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How to train a flow
It depends if you the target p.d.f is:

1. easy to sample, difficult to evaluate:   p.d.f. of MC or Data in a control region → we have events  
2. difficult to sample, easy to evaluate:   multidimensional integrand  → we have the function

8

1. Training by maximum likelihood

Take samples X, get their density from the flow,  maximize 
the total likelihood, optimize flow parameters by gradient 
descent

2.        Training by sampling

Sample Z samples from the latent space, 
Pass through the flow to get X samples and their density p(x)
Evaluate the function → compute a divergence between p(x) and 
target p*(x) → optimize flow parameters by gradient descent

reverse KL divergenceKL divergence
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Flows conditioning

A flow can be conditioned by external information to model  p( x | y ):

- include the dependence in the conditioner DNNs

- N.B. the conditioning dimensions y are not part of the flow

9

conditional Y
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Applications in HEP

- Simple example: initial gluon momenta from reconstructed objects

- Importance sampling (MC integration, MCMC processes)

- Conditional unfolding

- Matrix Element methods

- Data/MC morphing/reweighting:

- One flow to correct them all: improving simulations
- in high-energy physics with a single normalising flow and a switch (C. C. Daumann, M. 

Donega, J. Erdmann, M. Galli, J.L.Spah, D. Valsecchi)           
https://arxiv.org/abs/2403.18582 
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https://arxiv.org/abs/2403.18582
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Example:  gluon momenta from reco-level boost
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- Get the initial parton fractions from the final state total boost

- Easy task given the good pileup rejection of the CMS reconstruction

- Strong correlation between the conditioning variables (reconstruction level 
boost) and the target variables (incoming gluon momenta)

log scale

log scale

gen-level gen-level
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Example:  gluon momenta from reco-level boost
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- Built a simple autoregressive spline-based conditional flow: 
- modelling p(gluon | reco boost) 
- 2D conditional space (pz, E), 2D feature space (pz, E)

- Train it using the gluon and reco level boost from MC by maximum likelihood

conditionally 
generated 
gluons

MC truth 

we get conditional generation!

Pzreco = 6 GeV
Ecmreco = 4 GeV

x1

x2

generated one point for each MC events
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Practice: Generation of neutrinos in WW events
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We can use a normalizing flow to generate 
the distribution of possible neutrinos quadrimomenta in 
WW VBS events. 

We will build a conditional p.d.f (neutrinos | events). 

The conditioning vector needs to be fixed dimensional 
… we need an encoder or the event information
→  transformer encoder + accumulation

6_NeutrinoFlow notebook

https://github.com/valsdav/PhDCourse_MLForPrecisionPhysics_2024/blob/master/6_NeutrinoFlow.ipynb

