

September 20, 2024 End of 1st PhD year Seminar

Giulia Lavizzari^{1,2,4} - giulia.lavizzari@cern.ch

Tutor: Pietro Govoni^{1,2} **Supervisors**: Raffaele Gerosa¹, Simone Gennai¹, Giacomo Cucciati³, Etiennette Auffray-Hillemans⁴

> ¹ INFN sezione di Milano Bicocca Università degli Studi di Milano Bicocca ³ University of Notre Dame ⁴ CERN

Outline

- Dimension-6 EFT reinterpretation of same-sign WW scattering with Run 2 data
 - status of the analysis
 - contributions to dim-6 EFT combination

• Development of ECAL DAQ SW for Phase 2 Upgrade

- SW developments in the last year
- test beam preparation
- tests at SuperModule 36
- ECAL Run 3 operations
 - DAQ activities
- Other activities
 - Conferences and publications
 - Schools and courses

Dimension-6 EFT interpretation of same-sign WW scattering with Run 3 data

Outline

Study of the effect of **dimension-6 EFT operators** on **fully-leptonic same-sign WW** scattering with Run 2 data

State of the art:

- SM analysis + dim 8 EFT studies: <u>2005.01173</u> (<u>SMP-19-012</u>)
- dim 6 EFT studies at LHE: <u>2108.03199</u>

Target:

• <u>dim-6 EFT combination</u> (CMS-AN-2024-108)

Very clean signature

- (very low QCD background):
- 2 forward jets
- 2 same sign charged leptons
- 2 neutrinos

Main backgrounds:

- fake leptons
- WZ (QCD and EWK)

• First non zero term (after SM) is **dimension 6**

- BSM effects are parametrized as additional terms to the SM lagrangian, which contain higher order operators
- Their intensity is gauged by **Wilson coefficients**

SM Effective Field Theory (SMEFT)

The **SM** is seen as a **low-energy approximation** of a more complete theory:

- $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=1}^{N} \frac{c_i}{\Lambda^{d-4}}$
- A new physics scale $\mathcal{O}^{(d_i)} \text{EFT operator of dimension } d_i$ c_i Wilson coefficient

EFT events are generated privately via Madgraph5 and <u>SMEFTsim</u>:

- UFO model: topU31_MwScheme_UF0_b_massless
- Operators considered: **cW**, **cHWB**, **cHWB**, **cHbox**, **cHDD** (choice driven by combination)
 - all operators belong to the Warsaw basis

SM analysis reproduction

- CMS
- Simultaneous fit of **SSWW SR**, **WZ** and **WZb CRs** + additional non-prompt for controls
 - wrt published AN: removed ZZ CR and removed non-prompt CR from fit
 - we use a **tighter, MVA-based lepton ID** + **Ultra Legacy** samples

Variable	$W^{\pm}W^{\pm}$	WZ	Nonprompt	WZb	ZZ
Number of leptons	2	3	2	3	4
p_{T}^ℓ	> 25/20 GeV	> 25/10/20 GeV	> 25/20 GeV	$> 25/10/20 \mathrm{GeV}$	$p_{\rm T} > 25/20/10/10 {\rm GeV}$
$p_{\mathrm{T}}^{\mathrm{j}}$	$> 50 \mathrm{GeV}$	> 50 GeV	$> 50 \mathrm{GeV}$	> 50 GeV	$> 50 \mathrm{GeV}$
$ \mathbf{m}_{\ell\ell} - \mathbf{m}_{\mathbf{Z}} $	> 15 GeV (ee)	< 15 GeV	> 15 GeV (ee)	< 15 GeV	$< 15 { m GeV}$ (both pairs)
$\mathrm{m}_{\ell\ell}$	> 20 GeV	-	> 20 GeV	-	-
$m_{\ell\ell\ell}$	-	> 100 GeV	-	> 100 GeV	-
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 30 GeV	> 30 GeV	> 30 GeV	> 30 GeV	-
Anti b-tagging	Applied	Applied	Inverted	Inverted	-
au veto	Applied	Applied	Applied	Applied	-
$max(z_{\ell}^{*})$	< 0.75	< 1.0	< 0.75	< 1.0	< 0.75
m _{ii}	> 500 GeV	> 500 GeV	> 500 GeV	$> 500 \mathrm{GeV}$	$> 500 \mathrm{GeV}$
$ \Delta \tilde{\eta}_{jj} $	> 2.5	> 2.5	> 2.5	> 2.5	> 2.5

Giulia Lavizzari - end of 1st year of PhD seminar

SSWW signal region (2018)

CMS

- 2 leptons, away from Z mass window, VBS selections on jets, bVeto
 - Main backgrounds: fake leptons WZ QCD WZ EWK

Control regions (2018)

WZ: 3 leptons, Z mass window, VBS selections on jets, bVeto

WZb: 3 leptons, Z mass window, VBS selections on jets, bTag

non-prompt: 2 leptons away from Z mass window, VBS selections on jets, bVeto

SM analysis: results and WIP

• 2018 close to completion

- fixed some systematics last week at the combination meeting, need to finish implementing them and run the shapes again
- 2016/2017: workflow completed, but there is some bug to fix (weights? cuts?)
 - significance much higher than expected
 - next steps: summary tables with yields, to figure out where exactly is the problem

	SSWW MC Asimov	SSWW Data Asimov	WZ MC Asimov	WZ Data Asimov
2018	10.287	10.2482	2.15454	2.07983
2017	9.63439	8.90379	2.06672	1.65507
2016 no HIPM	10.287	10.3099	2.09598	2.16041
2016 HIPM	10.0008	10.0653	2.07625	2.04662

	\sim		/ /	$\langle \rangle$
	2016	2017	2018	Combination
EWK WW (observed/expected)	4.6/5.2	7.2/7.2	7.9/7.2	11.5/11.3
EWK WZ (observed/expected)	2.6/2.7	4.4/2.8	4.6/3.7	6.8/5.3
		11	V	

$$|A_{EFT}|^2 = |A_{SM}|^2 + 2Re(A_{SM}A_{op}^*) + |A_{op}|^2$$

EFT contributions considered only for WW (not yet for WZ)

- A pure SM contribution
- Additional terms with linear and quadratic

dependence on the Wilson coefficient

Same regions and variables as → sensitivity hierarchy ~ LHE study

Results: EFT fits 1D

i<mark>iulia Lavizzari</mark> - end of 1st year of PhD semir

Two operators are fitted simultaneously. As for the 1D fits, all the other operators are fixed to 0 (plots for cW wrt other operators as from combination)

• Bounds are slightly larger than in the individual fits

EFT analysis: conclusions and WIP

Our results are competitive with the other state of the art studies

- Full workflow in place, from nanoAOD to datacard with EFT operators
 - some checks needed on 2016 and 2017
 - close to completion for 2018, after last systematics were decided and added in the last combination meeting
- Target: join the combination!
 → Moriond 2025

Dimension-6 EFT combination

Joined the effort for the dimension-6 EFT combination of direct EFT interpretations in the EW sector [gitlab] [G. Boldrini's presentation]

- inputs from 15 analyses, 6 operators chosen
 - SSWW grants sensitivity to 5 of them
 - during last year all 5 of them were implemented (table not up to date)!
- gitlab CI/CD pipeline testing each analysis and performing the combination → **highly automated framework**!
 - See Giorgio's presentation

cHbox cHWB cWW CHDD cHW cHB cV B ? ? ? WV ? ? Wv VBF-W VBS ZZ **VBS SSWW** VBS WZ VBS ZV VBS WV VVV/v VBS SSWW T VBF-Z ww ? ? ? ? 2 γγ→ττ ? Ζ →ττυμ ? VBF-Y

zari - end of 1st year of PhD seminar

Combination: in-person meetings

Joined both in-person meetings :

- May 2024: first results combining 5 analyses
- + developed tools and CI/CD infrastructure
 - o all nuisances uncorrelated, minimal set of assumptions (→ WIP!)
 - both <u>AnalyticAnomalousCoupling</u> and <u>InterferenceModel</u> fwks tested
- **September 2024**: discussion on correlation of systematic uncertainties
- + tools for datacards editing

- produced first <u>guidelines</u> for correlation
- tested tools for datacard editing

'samples' : { ''sake' : [fakeW_EWKsubUp , fakeM_EWKsubUown], }, 'cuts': phase_spaces_tot_mu	theory: QCD pdf weight Parton Shower UE		
omething very different with the non-prompt estimation!	TOPptReweight: PU (splitted years) JER		
(i.e. no acceptance). aft included. of samples should be unified	Fakes (ele and mu) JES - to be discussed after see… MET		
['LHEScaleWeight[0]', 'LHEScaleWeight[1]', 'LHEScaleWeight[3]', 'LHESca	Ele and mu efficiency and scale: JET PU ID LUMI:		
ickgrounds:			
QCDscale_'+sample] = { name' : 'QCDscale_'+sample, Kind: 'weight.envelope', 'type' : 'shape', 'sambet' : (sample: variations),	Still Missing raccomandations:		

because I did someth

theory: QCD

Not normalized (i.e. no To all samples, eft inc

Problem: name of sar

variations = ['LHE

nuisances['QCDsc 'name 'kind

for sample in backgr

12

Development of ECAL Upgrade SW for Phase 2

ECAL Phase 2 upgrade overview

- **Redesign of ECAL on-detector electronics** to cope with the harsher radiation levels and the higher pile-up levels:
 - higher analog bandwidth ⇒ shorter signal rising time
 - higher sampling rate (from 40 MS/s to 160 MS/s)
 - ⇒ better discrimination of APD spikes
 - ⇒ improved time resolution (30ps)
 - ⇒ better primary vertex reconstruction

• New common backend for ECAL and HCAL to cope with stringent L1 requirements:

- \circ higher trigger rate (100 kHz \rightarrow 750 kHz)
- longer latencies ($4.2 \,\mu s \rightarrow 12 \,\mu s$)

On-detector electronics

CATIA (analog ASIC)

2x transimpedance amplifier

LITE-DTU (digital ASIC)

2x 12-bit ADCs sampling at 160 MHz gain selection & data transmission unit lossless data compression algorithm

Faster analog electronics

(larger analog bandwidth, sampling rate from 40 to 160 MHz, with 12-bit resolution)

→ better noise filtering and time measurements

vizzari - end of 1st year of PhD seminar

LpGBT

radiation tolerant optical transmission system

Fast optical links for data transmission

Off-detector electronics

Trigger objects reconstructed off-detector:

→ 25x more granular trigger primitives (single crystal granularity)

Powerful spikes suppression algorithms

Spikes are particle ionizing in the APDs

APD HCAL ECAL

Barrel Calorimeter Processor (BCP)

FPGA data aggregator, provides clock and control to FE and DAQ interface

- + decompression algorithm
- + trigger primitives construction
- + spike killing algos

Starting point: SW setup for tests and devel

Set of functions and scripts in Python + Rogue libraries:

- easy to modify, quick implementation of new features
- ★ hardly readable, not fully optimized, complex propagation of changes

 ✓ all functionalities are in place
 ✓ still widely used for testing and development

RPC: first implementation of final SW

First prototype of the target SW: custom adaptation of Wisconsin UNI's RPC service

- Client running on DAQ/user PC, sending calls to the BCP (e.g. configureFE ...)
- Server (running on ELM) receiving calls, performing actions and communicating with the electronics
- database

status:

✓ full FE and VFE configuration
 ✓ config storage on DB in place
 ✗ no BCP alignment (will be FW)

Also developed a third "flavor" of the SW in order to comply with Test Beam SW: **Python version of the Client + Python DB interface**

Client and Server use Google **Protobuf** communication protocol ⇒ language agnostic

ECAL Phase2 database

(?)

Designed and built the first prototype of DB (Oracle):

- HW components (position, barcodes, properties ...)
- SW components (position, barcodes, configuration registers ...)
- maps (shortcuts)
- oracle DB exists
- C++ interface
- Python interface

ECAL Phase2 database (preliminary)

Currently **preparing next test beam** (16 - 27 october 2024):

- single readout tower to test new version of FE, VFE, LVR, LiTE DTU and CATIA
 - ✓ adapted SW to LiTE DTU v3.3, now fully integrated in the readout chain
 - ✓ SW mostly already in place
 - **X** HW (cold box + rotating table) to be commissioned in the next weeks
 - X DB undergoing upgrade to improve usability

@SM36 various tests and measurements

Many **measurement campaigns** by different groups took place at **SM36**: we (DAQ team) take care of HW setup, SW configuration and DAQ

- commissioning and integration of new electronics (e.g. LiTE DTU v3.0)
- laser monitoring upgrade tests
- LVR/VFE tests (<u>next slides</u>)

@SM36 LVR/VFE tests

In March we received **LiTE DTU v3.0** showing uniform **extra power consumption** in both analog and digital domain (~ 30 mA each)

- ⇒ investigations on the origin of the problem (took months)
 - turns out (end of July) that the **wrong process was submitted to TSMC**
 - not the fault of CERN/INFN
 - solution is to produce all chips (80k) again, correctly

⇒ studied **possible strategies to cope with increased current consumption**

- Chip fully functional: possible to use it? Would it fail sooner? see <u>C. Borca's slides</u>
- Proposal: slight modification of LVR and VFE cards (see <u>T. Gadek's slides</u>)
 - I run measurements at SM36 on the modified boards, to assess the feasibility of the strategy.
 See <u>my slides</u> and <u>backup</u>

@SM36 LVR/VFE tests results

- **new LVR** to cope with increased power consumption of LiTE DTUs:
 - reshuffled converters in LVR and added a big passive filter
- **new VFE** cards to mitigate the filtering dependance on the LiTE DTU power consumption
 - reduction of LiTE-DTU passive filters 0

Results:

- noise: small increase in new VFEs, no differences with modified LVR
- current consumption lower in towers with modified VFE
- no temperature alterations
- uplink stability good

ECAL Run 3 operations

Activities overview

Took shifts for ECAL (~ 10 weeks):

- ECAL DOC
- ECAL DGL
- ECAL DAQ Expert on Call

A lot of activity because of the **high ECAL deadtime** (up to 7%, normally ~ 4%). (multiple concurring effect: very high PU, higher lumi delivered wrt foreseen ⇒ ECAL thresholds against noise are too loose ... see <u>R. Paramatti's slides</u>)

\Rightarrow Joined the investigations:

- developed sw tools to retrieve payload history in 2024 —
- developed a real time monitor (with ~7 days history) for shifters (next slide)

Dead time monitor

Giulia Lavizzari - end of 1st year of PhD seminar

Other activities

Students

- Martina Chirico (INFN scholarship "La fisica delle particelle per scoprire l'universo"):
 ECAL upgrade pedestal calibration studies [Martina's presentation @ECAL Upgrade meeting]
 - Full setup with electronic chain mounted on the spare supermodule SM 36
 - Configuration process validated, she also found interesting bug (not concerning) in the process
 - → engineers investigating!

- Agustin Gabriel Guillenea Odella (CERN Summer Student Programme): SMEFT
 reinterpretation of SSWW using HEPData [Agustin's presentation @SMP-VV meeting]
 - MadAnalysis framework for analysis, using DELPHES for detector simulation
 - EFT events generated through Madgraph and SMEFTsim
 - \rightarrow 1D constraints on cW operator!

Conferences and publications

talk @ 1st COMETA (COmprehensive Multiboson Experiment-Theory Action) General Meeting An Anomaly Detection strategy for new physics searches at the LHC [link]

talk @ 12th Beam Telescopes and Test Beams workshop (BTTB 2024) On-beam test for the LHC Phase-II CMS electromagnetic PbWO4 calorimeter [link]

talk @ XIII International Conference on New Frontiers in Physics (ICNFP 2024) Upgrade of the CMS Electromagnetic Calorimeter for the High-Luminosity LHC [link]

talk @ Upgrade Plenary of CMS Upgrade Week (16-20 September 2024) Barrel Calorimeters Upgrade status report <u>[link]</u>

proceeding: A Variational AutoEncoder for Model Independent Searches of New Physics at LHC, **Springer Lecture Notes in Computer Science (LNCS), volume 14365, 2024** - Image Analysis and Processing - ICIAP 2023 Workshops Proceedings, Part I <u>[link]</u>

proceeding: Use of Anomaly Detection algorithms to unveil new physics in Vector Boson Scattering, **EPJ Web of Conf. Volume 295, 2024** - 26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023) <u>[link]</u>

Schools and courses

CMS

Schools:

• AIPHY: Artificial intelligence and modern physics: a two-way connection (end of the month)

Courses:

- Scientific computing with Python
- Physics at Colliders (starting next month)

BACKUP

EFT operators

a Second
Composit New

$Q^{(1)}_{Hl} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{l}_p\gamma^{\mu}l_p)$	$Q_{Hl}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{i}} H) (\bar{l}_{p} \sigma^{i} \gamma^{\mu} l_{p})$
$Q_{Hq}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_p\gamma^{\mu}q_p)$	$Q^{(3)}_{Hq} = (H^{\dagger} i \overleftrightarrow{D^{i}_{\mu}} H) (\bar{q}_{p} \sigma^{i} \gamma^{\mu} q_{p}$
$Q_{qq}^{(1)} = (\bar{q}_p \gamma_\mu q_p)(\bar{q}_r \gamma^\mu q_r)$	$Q_{qq}^{(1,1)} = (\bar{q}_p \gamma_\mu q_r)(\bar{q}_r \gamma^\mu q_p)$
$Q_{qq}^{(3)} = (\bar{q}_p \gamma_\mu \sigma^i q_p) (\bar{q}_r \gamma^\mu \sigma^i q_r)$	$Q_{qq}^{(3,1)} = (\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_r \gamma^\mu \sigma^i q_p)$
$Q_{HD} = (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H)$	$Q_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H)$
$Q_{HWB} = (H^{\dagger}\sigma^{i}H)W^{i}_{\mu\nu}B^{\mu\nu}$	$Q_{HW} = (H^{\dagger}H)W^{i}_{\mu\nu}W^{i\mu\nu}$
$Q_W = \varepsilon^{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$	$Q^{(1)}_{ll} = (\bar{l}_p \gamma_\mu l_r) (\bar{l}_r \gamma^\mu l_p)$

•Enter via modifications of the EW input quantities: $(Q_{Hl}^{(3)}, Q_{ll}^{(1)}, Q_{HD}, Q_{HWB})$

•Induce modifications via:

-Vff couplings $(Q_{Hl}^{(1)}, Q_{Hl}^{(3)}, Q_{Hq}^{(1)}, Q_{Hq}^{(3)})$

- H denotes the SU(2) Higgs doublet
- Wiµv and Bµv denote the gauge fields associate with SU(2) and U(1) symmetries respectively
- l,q denote the left-handed lepton and quark doublets
- u, d, e denote the right-handed quark and <u>charged</u>-lepton fields
- i, j, k denote the SU(2) indexes and sig_i the Pauli matrices

-Gauge couplings (Q_W)

-HVV couplings $(Q_{HD}, Q_{HW}, Q_{HWB}, Q_{H\Box})$

-Four-quark contact terms $(Q_{qq}^{(1)},Q_{qq}^{(3)},Q_{qq}^{(1,1)},Q_{qq}^{(3,1)})$

Phase 2 will deliver to the experiments a **much larger dataset** compared to Phase 1.

To achieve this, **unprecedented instantaneous luminosities** will be provided: (currently $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow \mathcal{L} = 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)

This will pose several challenges for the CMS subdetectors:

- More collisions per Bunch Crossing → better discrimination of spurious events (Pile Up 30-60 → 140-200)
- More radiation damage → radiation tolerance
- More stringent requirements
 - longer latencies ($4.2 \,\mu s \rightarrow 12 \,\mu s$)
 - o higher trigger rates (100 kHz → 750 kHz)

key role in the **detection of electrons and photons** for the CMS experiment at LHC

- homogeneous, fine grained, high-resolution calorimeter
- PbWO₄ scintillating crystals
 - avalanche photodiodes (APD) in barrel
 - vacuum phototriodes in endcaps

Phase 2 Upgrade:

- endcaps and forward calorimeters will be replaced by HGCAL
- barrel:
 - full refurbishment of electronics
 - crystals + APDs will not change, but will
 be **operated at lower temperature**

Physics goals for ECAL in Phase 2

- 1. the goal is to **maintain the performance of Phase 1** despite the harsher datataking conditions: **target energy resolution same as Phase 1**
- 3000 fb⁻¹ (13 TeV) CMS Projection we aim at **precise time resolution** off-line 2. Η→γγ S2 (80% Vertex Efficiency) (**σ**t = 30 ps) for **e** +/- and **γ** with **E** > 50 GeV fiducial volume : $p_{T}^{gen}(\gamma_{1(2)}) > \frac{1}{3}(\frac{1}{4}) m_{\gamma\gamma}$ S2+ Optimistic (75% Vertex Efficiency) (unprecedented!) $|\eta^{\text{gen}}(\gamma_{1,2})| < 2.5$ S2+ Intermediate (55% Vertex Efficiency) $Iso_{R=0.3}^{gen} (\gamma_{1,2}) < 10 \text{ GeV}$ S2+ Pessimistic (40% Vertex Efficiency) motivation: improvement of $H \rightarrow \gamma \gamma$ vertex arbitrary units S/(S+B)-weighted $\sigma_{\text{eff}}^{\text{S2}}$ =1.71 GeV signal models identification at high pile-up + benefit from CMS MTD no ECAL timing ECAL timing σ_t = 30 ps — (dedicated timing detector) ECAL + MTD CMS-TDR-020 125 130 120 135 110 115 11 12 $m_{_{YY}} \left(GeV \right) ~\sigma_{_{\rm off}}$ relative to S2 (GeV)

Test Beam 2023 performances

H4 test beam line at the North Area of the **CERN SPS:** e^{+}/e^{-} (20 - 300 GeV, $\Delta p/p < 0.5\%$).

CMS ECAL Preliminary Beam Test 2023, H4/SPS

Giulia Lavizzari - end of 1st year of PhD seminar

LVR tests - setup SM 36

- 9 towers powered on, 4 measured (FE 3.3)
 - 3 towers targeted for the LVR switch 0
 - 1 tower monitored \bigcirc
 - each tower has its own supply 0 channel

DCS LV

BCP rack

LVR tests - measurements

- Current consumption pre-calibration (at power-on) and post calibration
 - taken from the Wiener power supply
- Temperature (every 15 minutes, 24h)
 - \succ CATIA, 2x VFE, 2x LVR \rightarrow all through lpGBT ADCs
- Pedestals (every 15 minutes, 24h)
- **Uplink stability** (every 15 minutes, 24h)

- **4 input voltage points**: 12 V, 11 V (HV on and off), 10 V, 9 V
- **O** 2 datasets: **standard LVR**, **modified LVR**