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FPGAs for CMS Level-1 Trigger

CMS Phase II Level-1 Trigger system 
intends to perform precise physics 
selection using a global event 
reconstruction already at hardware level

FPGAs

low-latency processing

ability to handle highly parallel tasks

reconfigurable nature allows for 
customization to meet specific 
requirements

superior performance for real-time data 
processing, with lower power 
consumption

Challenges

• meet the stringent latency 
requirements (𝜇𝑠)

• FPGA resources are limited: 
ML models need to be 
compressed and optimized 
through quantization and 
pruning

• Model optimization: tools 
like hls4ml, which facilitate 
high-level synthesis.

New trigger algorithms 

Deploying ML on FPGAs

2



3

Planned activities 

Starting from the Master Thesis work
implement a  DNN for the di − 𝜏 mass regression to 
replace SVFit algorithm in all Run III analyses

 

Particle Transformer for 𝝉 lepton pair 
invariant mass reconstruction for the 
𝑯𝑯 → 𝒃ഥ𝒃𝝉+𝝉− CMS analysis

Model distillation optimized for Phase-II implementation on FPGAs. Incorporating 
invariant mass information could lower the tau trigger threshold, currently set at 
40 GeV, thereby recovering the corresponding phase space 

Level-1 Trigger Scouting on soft taus. 
Improvement of the trigger acceptance of tau leptons, 
specifically extending the coverage towards lower pT 

Tau costituents 
b-jets informationTau Pair Mass Transformer

TPMT

3

As CERN 
Doctoral student
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PhD courses, Workshops and Schools

✓ Introduction to FPGAs (November 2023)

✓ ML@L1 Trigger Workshop at CERN  (December 2023)

✓ 6th Inter-experiment Machine Learning Workshop
 +  poster presentation  (February 2024)

✓ Mandatory interdisciplinary courses:
1. Communicating research in the era of social media
2. Productivity tool for (young) researchers
3. Surfing the academic job marketing

✓ Tutor activity for Laboratory II  (March-June 2024)

✓ AI-INFN 1° User Form (talk) (June 2024)

X Internal courses: 
Deep Learning for Physicists (to attend)
Physics at Colliders (to attend)
Particle Physics II   (ongoing)

~ AI-PHY school (October 2024)

Best 
presentation 
award - 109th  

SIF Conference 

Article 
publication on 

Nuovo Cimento
Journal

Open 
Access

4

https://indico.cern.ch/event/1297159/contributions/5729185/
https://agenda.infn.it/event/40489/contributions/232809/
https://www.sif.it/riviste/sif/ncc/econtents/2024/047/0/article/1
https://www.sif.it/riviste/sif/ncc/econtents/2024/047/0/article/1
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Di-𝝉 invariant mass reconstruction 

The presence of neutrinos from tau decay prevent the full 

reconstruction of the di-tau system invariant mass, 
allowing only the reconstruction of the visible tau-decay 
products (𝑚𝜏𝜏

𝑉𝐼𝑆) whose low resolution doesn't help in the 

signal discrimination task

Objective: Reconstruct the four-momentum of each 𝜏 particle before decay to accurately 

estimate the invariant mass and retrieve the kinematics of the parent particle

1° GOAL

Understand the model functionality on 𝑯 → 𝝉+𝝉− and 𝐙 → 𝝉+𝝉−

and considering only taus that decay hadronically so far 

Tau Pair Mass Transformer

TPMT

𝝉+

𝝉−

𝒉𝒂𝒅

𝒍𝒆𝒑/𝒉𝒂𝒅

𝝂𝝉

ഥ𝒖

𝒅
𝝂𝝉

𝝂𝒆

𝒆−

𝑯

SVFit algorithm

Improves the 𝑚𝜏𝜏 resolution only marginally 

High computational time
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Tau

Shape: 6, 3 = 
(𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 , 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

TauProd
Taus’ decay products

Shape: 10, 12 = (𝑛𝑢𝑚_𝑡𝑎𝑢𝑝𝑟𝑜𝑑𝑠 , 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

padding if an event 

has less than 10 
tau products

Input features 

𝒍𝒐𝒈𝒑𝒕 
𝜼 
𝝓 
𝒎

𝒍𝒐𝒈
𝒑𝑻

𝒑𝑻 𝝉

𝒄𝒉𝒂𝒓𝒈𝒆
𝒕𝒂𝒖𝑰𝒅𝒙

 

𝒊𝒔_𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏
𝒊𝒔_𝒎𝒖𝒐𝒏 
𝒊𝒔_𝒑𝒊𝒐𝒏
 𝒊𝒔_𝒌𝒂𝒐𝒏

𝒊𝒔_𝒑𝒉𝒐𝒕𝒐𝒏

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
𝑓𝑟𝑜𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝐼𝐷

𝝉𝟏

𝝉𝟐

𝑴𝑬𝑻
𝒋𝒆𝒕𝟏

𝒋𝒆𝒕𝟐

𝒋𝒆𝒕𝟑

𝒍𝒐𝒈𝒑𝑻

𝜼
𝝓 

GenPart
Shape: 2, 1 = 
(𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 , 𝑛𝑢𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

𝝉𝟏

𝝉𝟐

𝒍𝒐𝒈𝒑𝑻

di-𝜏 invariant mass at 
generator level

𝒎𝝉𝝉
𝑮𝑬𝑵

Not the full 4-momentum 

since eta and phi does not 
change

6
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Pre-processing steps
7

TAU SELECTION

At least 2 taus
• Gen matched 

• Hadronic decay
• 𝑝𝑇 ≥ 20 GeV

SPLIT IN TRAIN, TEST AND VALIDATION 

 

80% 10% 10%

JETS SELECTION

First 3 leading jets with 
Δ𝑅 𝑗𝑒𝑡, 𝑡𝑎𝑢 > 0.4

(minimum 𝑝𝑇: 10 GeV ) 

VARIABLE ENCODING & 

FEATURE ENGENEERING 

• Definition of new variables 

• Order TauProd with respect to 
their 𝑝𝑇 and padding with 

max_𝑙𝑒𝑛 = 10

Data sets GluGluHToTauTau_M125 DYJetsToLL_M-50-madgraphMLM
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Model Architecture 

Prediction

GenPart

8

Dense layers

𝑀𝐸𝑇

𝑗𝑒𝑡1

𝑗𝑒𝑡2

𝑗𝑒𝑡3

TauProd

Tau

Loss function

𝑀𝑒𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝐴𝐸𝑙𝑜𝑔𝑝𝑇
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑡𝑎𝑢𝑠

Training time: ~ 𝟏. 𝟓 𝒎𝒊𝒏 𝒑𝒆𝒓 𝒆𝒑𝒐𝒄𝒉 

Inference time: ~ 𝟐 × 𝟏𝟎−𝟑 𝒔 𝒑𝒆𝒓 𝒆𝒗𝒆𝒏𝒕
Number of parameters: ~ 𝟎. 𝟓 𝑴

𝒍𝒐𝒈𝒑𝑻 𝝉𝟏

𝒍𝒐𝒈𝒑𝑻 𝝉𝟐

𝒍𝒐𝒈𝒑𝑻 𝝉𝟏

𝒍𝒐𝒈𝒑𝑻 𝝉𝟐

𝑷 − 𝑴𝑯𝑨

𝑀𝐴𝐸 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝜏𝜏
𝑇𝑅𝐴𝑁𝑆  𝑎𝑛𝑑 𝑚𝜏𝜏

𝑀𝐶  (7% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠)

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻
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9 𝒎𝝉𝝉 results

Train ratio 
𝑯 ∶ 𝒁 = 2 : 1

Best training:
𝐴𝑈𝐶 𝑠𝑐𝑜𝑟𝑒 of 0.84
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GluGluHToTauTau_M125 DYJetsToLL_M-50-madgraphMLM
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10

 AUC suggests that TPMT has a better separation capability

 The wrong peak is slightly higher for H than for DY (due to the different response)  

 Training time: 1.5 𝑚𝑖𝑛 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ ~ 80 𝑒𝑝𝑜𝑐ℎ𝑠
 Inference time: 2 ∙ 10−3 𝑠

 Inference on any other resonance would have worked worse 
 (if not added in the train set composition)

Training on flat mass samples
GluGlutoXto2Tau_M-30to300

VBFtoXto2Tau_M-30to300
 and inference on H and Z samples

Preliminary considerations

Leptonic decaying taus in addition to 

hadronic ones  (𝛕𝐡 + 𝐥 𝐞, 𝛍 )

No more jet information
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Overall training on ggF sample – tau_tau, ele_tau, mu_tau

tau_tau

mu_tau

ele_tau

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − H 164.98           47.23

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − H 139.72           30.22

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − 𝐃𝐘 152.69           53.85

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − 𝐃𝐘 116.53           23.47

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − H 166.28           47.63

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − H 139.91           29.51

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − 𝐃𝐘 155.12           53.94

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − 𝐃𝐘 116.81           23.50

ta
u
_
ta

u
e
le

_
ta

u
m

u
_
ta

u

Fit Type Mean             Std

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − H 127.26           30.79

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − H 129.81           28.08

𝒎𝝉𝝉
𝑺𝑽𝑭𝒊𝒕  − 𝐃𝐘 99.83            26.28

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻  − 𝐃𝐘 101.47           21.18

11
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tau_tau

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H                -0.26               0.2

𝒑𝑻 𝝉𝟐 - H -0.42               0.35

𝒎𝝉𝝉 - H -0.35              0.15

𝒑𝑻 𝝉𝟏 - DY               -0.22              0.18

𝒑𝑻 𝝉𝟐 - DY -0.33              0.41 

𝒎𝝉𝝉 - DY               -0.28              0.13

RECO

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H              0.04              0.23

𝒑𝑻 𝝉𝟐 - H 0.04              0.35

𝒎𝝉𝝉 - H 0.04              0.3

𝒑𝑻 𝝉𝟏 - DY             0.13              0.23

𝒑𝑻 𝝉𝟐 - DY 0.12              0.28 

𝒎𝝉𝝉 - DY             0.12              0.23

TPMT

𝒑𝑻
𝝉𝟏, 𝐩𝐓

𝝉𝟐, 𝐦𝝉𝝉 resolution results for tau_tau pairType 𝑯 & 𝒁 
12
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ele_tau

𝒑𝑻
𝝉𝟏, 𝐩𝐓

𝝉𝟐, 𝐦𝝉𝝉 resolution results for ele_tau pairType

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H                -0.26               0.2

𝒑𝑻 𝝉𝟐 - H -0.42               0.35

𝒎𝝉𝝉 - H -0.35              0.15

𝒑𝑻 𝝉𝟏 - DY               -0.22              0.18

𝒑𝑻 𝝉𝟐 - DY -0.33              0.41 

𝒎𝝉𝝉 - DY               -0.28              0.13

RECO

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H              0.04              0.23

𝒑𝑻 𝝉𝟐 - H 0.04              0.35

𝒎𝝉𝝉 - H 0.04              0.3

𝒑𝑻 𝝉𝟏 - DY             0.13              0.23

𝒑𝑻 𝝉𝟐 - DY 0.12              0.28 

𝒎𝝉𝝉 - DY             0.12              0.23

TPMT

𝑯 & 𝒁 13
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Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - ggF -0.26              0.2

𝒑𝑻 𝝉𝟐 - ggF -0.44              0.35

𝒎𝝉𝝉 - ggF -0.35              0.18

𝒑𝑻 𝝉𝟏 - VBF             -0.29             0.21

𝒑𝑻 𝝉𝟐 - VBF -0.37             0.39 

𝒎𝝉𝝉 - VBF             -0.37             0.18

RECO

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - ggF -0.02             0.21

𝒑𝑻 𝝉𝟐 - ggF -0.02             0.26

𝒎𝝉𝝉 - ggF -0.02              0.19

𝒑𝑻 𝝉𝟏 - VBF          -0.04             0.2

𝒑𝑻 𝝉𝟐 - VBF -0.03             0.28 

𝒎𝝉𝝉 - VBF          -0.04             0.18

TPMT

𝒑𝑻
𝝉𝟏, 𝐩𝐓

𝝉𝟐, 𝐦𝝉𝝉 resolution results for tau_tau pairType 𝒈𝒈𝑭 & 𝑽𝑩𝑭 14
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𝝉𝟏 𝝉𝟐

𝐩𝐓 ratio versus 𝐩𝐓
𝑹𝑬𝑪𝑶 for tau_tau pairType

➢ Different response between resonances and flat mass samples
➢ More differences between H and Z compared to ggF and VBF responses  

Due to convolution of tau resolution and 𝒑𝑻
𝑮𝑬𝑵 distribution

Studying new 
training strategies

15
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Conclusions
16

For optimal training, it is essential to include samples that reflect the 

true underlying distributions of the events whose mass we aim to 

estimate, rather than using flat distributions that can lead to 

suboptimal performance

➢ Training on H and DY
• TPMT behavies as a classifier
• Good mass resolution but strong dependent on the training samples

➢ Training on ggF sample
• Resolution and fits much worst, still better than SVFit but suboptimal

Future plans

• Add a loss term regarding MET

• Train TPMT with the TauProd matrix divided by the two taus

ℒ𝑀𝐸𝑇 = |𝑀𝐸𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑇
𝑛𝑒𝑢𝑡𝑟𝑖𝑛𝑜𝑠 |
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New Model Architecture 

Prediction

GenPart

Dense layers

𝑀𝐸𝑇

TauProd

Tau

Number of parameters: ~ 𝟎. 𝟗 𝑴

𝒍𝒐𝒈𝒑𝑻 𝝉𝟏

𝒍𝒐𝒈𝒑𝑻 𝝉𝟐

𝒍𝒐𝒈𝒑𝑻 𝝉𝟏

𝒍𝒐𝒈𝒑𝑻 𝝉𝟐
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𝝉𝟏

𝝉𝟐

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻

𝒎𝝉𝝉
𝑻𝑷𝑴𝑻

Loss function

𝑀𝐴𝐸 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝜏𝜏
𝑇𝑅𝐴𝑁𝑆  𝑎𝑛𝑑 𝑚𝜏𝜏

𝑀𝐶  (7% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠)

𝑀𝑒𝑎𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝐴𝐸𝑙𝑜𝑔𝑝𝑇
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑡𝑎𝑢𝑠

𝑀𝐸𝑇 𝑡𝑒𝑟𝑚 = |𝑀𝐸𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑇
𝑛𝑒𝑢𝑡𝑟𝑖𝑛𝑜𝑠 | 

17

𝑷 − 𝑴𝑯𝑨
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Thank you for your attention!
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BACKUP
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Powered MHA

Transformer 
Encoder

(P-MHA)

EDGES

(6, 4)

Array

NODES

Array

(6, 6, 4)

4 pairwise features Particle Transformer 
for jet tagging

from

20

https://arxiv.org/pdf/2202.03772
https://arxiv.org/pdf/2202.03772
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𝒍𝒐𝒈𝒑𝑻
𝝉𝟏 , 𝒍𝒐𝒈𝒑𝑻

𝝉𝟐 results

Leads to the 
wrong peak 

mass

There is a 𝑙𝑜𝑔𝑝𝑇 transition region: 

for 𝑙𝑜𝑔𝑝𝑇 <  4, H and Z taus’ 𝑙𝑜𝑔𝑝𝑇 need a 

different scale factor 

21
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mu_tau

22 𝒑𝑻
𝝉𝟏, 𝐩𝐓

𝝉𝟐, 𝐦𝝉𝝉 resolution results for mu_tau pairType

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H                -0.26               0.2

𝒑𝑻 𝝉𝟐 - H -0.42               0.35

𝒎𝝉𝝉 - H -0.35              0.15

𝒑𝑻 𝝉𝟏 - DY               -0.22              0.18

𝒑𝑻 𝝉𝟐 - DY -0.33              0.41 

𝒎𝝉𝝉 - DY               -0.28              0.13

RECO

Fit Type Mean             Std

𝒑𝑻 𝝉𝟏 - H              0.04              0.23

𝒑𝑻 𝝉𝟐 - H 0.04              0.35

𝒎𝝉𝝉 - H 0.04              0.3

𝒑𝑻 𝝉𝟏 - DY             0.13              0.23

𝒑𝑻 𝝉𝟐 - DY 0.12              0.28 

𝒎𝝉𝝉 - DY             0.12              0.23

TPMT
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𝒎𝝉𝝉
𝑯 , 𝒎𝝉𝝉

𝒁 quartiles

Distribution Q1                Q2              Q3

SVFIT - H           109.19           130.00 153.64

TPMT - H 111.37           130.18         149.17     

SVFIT - DY 85.31 103.24         124.69

TPMT - DY 88.09           102.31 117.06

tau_tau

Distribution Q1                Q2               Q3

SVFIT - H           147.15           191.63 270.05

TPMT - H 120.89           140.39        160.59     

SVFIT - DY 132.44 184.51        279.27

TPMT - DY 101.99 117.80 134.57

ele_tau

Distribution Q1                Q2               Q3

SVFIT - H           148.48           193.65 272.63

TPMT - H 120.80           140.67         160.89     

SVFIT - DY 134.61 186.57         279.32

TPMT - DY 102.45           117.99 134.84

mu_tau
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𝐩𝐓 ratio versus 𝐩𝐓
𝑹𝑬𝑪𝑶 for all pairTypes
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𝐩𝐓 ratio versus 𝐩𝐓
𝑹𝑬𝑪𝑶 for all pairTypes
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𝒑𝑻
𝑮𝑬𝑵 distributions  Before resampling 

on the first tau

After resampling 

on the first tau
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Scaled Dot - Product
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Self-Attention

Figure: self-attention mechanism with a focus on the matrix dimensions
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Cross-Attention

Figure: depicts the various tensor sizes for a single attention head

In self-attention, we work with the same input sequence. In cross-attention, we 

mix or combine two different input sequences. In the case of the original 

transformer architecture, that's the sequence returned by the encoder module 

and the input sequence being processed by the decoder part on the right.
The two input sequences and can have different numbers of elements. 

However, their embedding dimensions must match.
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Immagine che contiene testo, Carattere, schermata, documento

Descrizione generata automaticamente

arxiv

arxiv31

https://arxiv.org/pdf/2401.00452
https://arxiv.org/pdf/2401.00452
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