Rare and new top quark interactions in CMS

Phenomenology 2021 Symposium 24 May 2021

Clara Ramón Álvarez
On behalf of the CMS Collaboration

clara.ramon.alvarez@cern.ch

Introduction

Top-quark production can be used to look for **New Physics**:

- Effective Field Theory frameworks (EFT)
- Searches for Flavour Changing Neutral currents
- > CP-violation
- **>** ...

Introduction: EFT

- No clear sign of New Physics @LHC from direct searches
- Allows to search for BSM effects in a model independent way, using precision measurements
- SM Effective Field Theory (SMEFT) parametrize the effect of physics up to an energy scale (Λ).
- The Lagrangian can be expressed as an expansion in higher dimensional (d) operators (\mathcal{O}) consisting on SM fields

Introduction: EFT

Wilson coeficients

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{d,i} \frac{c_i^d}{\sqrt{d-4}} \mathcal{O}_i^d$$

Suppressed by $1/\Lambda$, computation up to dim 6

	$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$						
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$						
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$						
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$						
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$						
$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^Il_r)(\bar{q}_s\gamma^\mu\tau^Iq_t)$	Q_{ed} $(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$		$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$						
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $						
		$Q_{ud}^{(8)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$						
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$						
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating									
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$								
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}arepsilon_{jk}\left[\left(q_p^{lpha j} ight)$	$T^{T}Cq_{r}^{\beta k}$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$							
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[\left(q_{p}^{\alpha}\right)\right]$	$\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$							
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$								
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$										

- 59 non-redundant dim-6 operators
- Depending on CP/flavour assumptions

CERN-LPCC-2018-01

	X^3		φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_pd_r\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A \mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{l}_p \gamma^{\mu} l_r)$	
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A \mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$\left (\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu} \right $	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{arphi\widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $	
$Q_{arphi\widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$\left (\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu} \right $	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu\nu}^{I} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

Table 2: Dimension-six operators other than the four-fermion ones.

tīZ

2016 and 2017 data

Baseline Selection (Inclusive Measurement):

- 3 or 4 leptons
- $N_{Jet} > 0$

 N_{Jet} and N_{B-tag} Classification

EFT interpretation:

- SMEFT in the Warsaw basis is used
- 4 relevant coefficients used for the parametrization: C_{tZ} , $C_{tZ}^{[I]}$, $C_{\phi t}$, $\overline{C}_{\phi O}$

Expressed using Warsaw basis:

JHEP 03 (2020) 056

77.5 fb⁻¹ (13 Te

 θ_W : weak mixing angle To assume Wtb vertex to be the SM one \rightarrow = 0

$$O_{\psi u}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} u_{j})$$

$$O_{uB}^{(ij)} = (\bar{q}_{i} \sigma^{\mu \nu} u_{j}) \quad \tilde{\varphi} B_{\mu \nu}$$

$$O_{uW}^{(ij)} = (\bar{q}_{i} \sigma^{\mu \nu} \tau^{I} u_{j}) \quad \tilde{\varphi} W_{\mu \nu}^{I}$$

$$O_{\psi q}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} q_{j})$$

$$O_{\psi q}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$

$$O_{\psi q}^{(ij)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$

tīZ

Classification to enhance sensitivity:

Events are further classified in bins of $p_T(Z)$ and bins of $cos(\theta_Z^*)$ (cosine of the angle between the negative charged lepton and the Z candidate in the Z rest frame.)

JHEP 03 (2020) 056

Procedure:

- gen-level samples for SM and SMEFT (LO) produced with grid in the parameter space
- Weight SMEFT/SM applied to detector-level SM sample
- Simultaneous fit using all N_{Lep} categories split in N_{Jet} , N_{B-tag} , $p_T(\mathbf{Z})$, $cos(\theta_Z^*)$

JHEP 03 (2020) 056

Results:

- Most stringent direct constrains on top quark EW dipole moments and top-Z vector couplings
- Good agreement with SM

tītī

Very low cross section process $\sigma(NL0) \sim 9 \text{ fb}$ (not yet observed)

2016 data

Baseline Selection: $2\ell OS$ and single lepton final states

Strategy:

BDT used to identify hadronic top decays. A second **BDT** is used to discriminate tttt from $t\bar{t}$. This takes as input the first BDT, event topology, event activity, N_{B-tag}

EFT Interpretation:

- Sensitive to 4-fermion interactions
- SMEFT in the Warsaw basis is used
- Four operators relevant at LO production

$$\begin{split} \mathcal{O}_{tt}^1 &= (\overline{t}_R \gamma^\mu t_R) \Big(\overline{t}_R \gamma_\mu t_R \Big) \,, \\ \mathcal{O}_{QQ}^1 &= \Big(\overline{Q}_L \gamma^\mu Q_L \Big) \Big(\overline{Q}_L \gamma_\mu Q_L \Big) \,, \end{split}$$

$$\mathcal{O}_{\mathrm{Qt}}^{1}=\left(\overline{\mathrm{Q}}_{\mathrm{L}}\gamma^{\mu}\mathrm{Q}_{\mathrm{L}}\right)\left(\overline{\mathrm{t}}_{\mathrm{R}}\gamma_{\mu}\mathrm{t}_{\mathrm{R}}\right)$$
 ,

$$\mathcal{O}_{\mathrm{Qt}}^{8} = \left(\overline{\mathrm{Q}}_{\mathrm{L}}\gamma^{\mu}T^{\mathrm{A}}\mathrm{Q}_{\mathrm{L}}\right)\left(\overline{\mathrm{t}}_{\mathrm{R}}\gamma_{\mu}T^{\mathrm{A}}\mathrm{t}_{\mathrm{R}}\right)$$

tītī

Procedure:

Cross section is parametrized at LO in terms of WC

$$\sigma_{\mathsf{t}\bar{\mathsf{t}}\mathsf{t}\bar{\mathsf{t}}} = \sigma_{\mathsf{t}\bar{\mathsf{t}}\mathsf{t}\bar{\mathsf{t}}}^{\mathrm{SM}} + \frac{1}{\Lambda^2} \sum_{k} C_k \sigma_k^{(1)} + \frac{1}{\Lambda^4} \sum_{j \leq k} C_j C_k \sigma_{j,k}^{(2)},$$

Results:

- Limits are set on C_k/Λ using the rate from the combination with **EPJC 78 (2018) 140**
- Marginalized constraints are set at 95% CL
- Improved constraints with respect to previous measurement <u>Chin. Phys. C42 (2018) 023104</u>

JHEP 11 (2019) 082

	$\sigma_k^{(1)}$			$\sigma_{j,k}^{(2)}$	
Operator		\mathcal{O}^1_{tt}	$\mathcal{O}_{ ext{QQ}}^{1}$	$\mathcal{O}^1_{\operatorname{Qt}}$	$\mathcal{O}_{\mathrm{Qt}}^{8}$
\mathcal{O}^1_{tt}	0.39	5.59	0.36	-0.39	0.3
$\mathcal{O}_{ ext{QQ}}^1$	0.47		5.49	-0.45	0.13
$\mathcal{O}^1_{\mathrm{Qt}}$	0.03			1.9	-0.08
$\mathcal{O}_{\mathrm{Qt}}^{8}$	0.28				0.45

Operator	Expected C_k/Λ^2 (TeV ⁻²)	Observed (TeV^{-2})
\mathcal{O}^1_{tt}	[-2.0, 1.9]	[-2.2, 2.1]
$\mathcal{O}_{ ext{QQ}}^{1}$	[-2.0, 1.9]	[-2.2, 2.0]
$\mathcal{O}^1_{\operatorname{Qt}}$	[-3.4, 3.3]	[-3.7, 3.5]
\mathcal{O}_{Qt}^{8}	[-7.4, 6.3]	[-8.0, 6.8]

Operator	Chin. Phys. C42 (2018) 023104
\mathcal{O}^1_{tt}	[-2.92,2.80]
$\mathcal{O}_{ ext{QQ}}^1$	
$\mathcal{O}^1_{\operatorname{Qt}}$	[-4.97,4.90]
$\mathcal{O}_{\mathrm{Qt}}^{8}$	[-10.3,9.33]

2017 data

Targeting ttH, tH, ttll, ttlv, ttlq

Baseline Selection:

- MVA to select prompt leptons
- 2 same sign, 3 and 4 leptons categories
- Jet and b-tag multiplicity, charge OSSF mass used to categorize
- 35 signal regions

Strategy:

Signal samples modelled at LO including EFT

Using detector-level observables

Yields are parametrized as function of WC → event weights parametrized as function of WC

Operators:

- Dim-6 in the Warsaw basis
- Operators involved in interaction with at least one top
- 16 Operators used:

Operators involving two quarks and one or more bosons							
Operator	Definition	WC	Lead processes affected				
$^{\ddagger}O_{\mathrm{u}arphi}^{(ij)}$	$\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right)$	$c_{\mathrm{t}\varphi}+ic_{\mathrm{t}\varphi}^{I}$	ttH, tHq				
$O_{arphi \mathrm{q}}^{1(ij)}$	$(\varphi^{\dagger} \overleftrightarrow{iD}_{\mu} \varphi)(\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$	$c_{\varphi Q}^- + c_{\varphi Q}^3$	$t\overline{t}H,t\overline{t}l\nu,t\overline{t}l\overline{l},tHq,tl\overline{l}q$				
$O_{arphi \mathrm{q}}^{3(ij)}$	$(\varphi^{\dagger} i \!$	$c_{arphi Q}^3$	$t\overline{t}H,t\overline{t}l\nu,t\overline{t}l\overline{l},tHq,tl\overline{l}q$				
$O_{arphi \mathrm{u}}^{(ij)}$	$(\varphi^\dagger i\!\!\overrightarrow{D}_\mu \varphi)(\overline{\mathbf{u}}_i \gamma^\mu \mathbf{u}_j)$	$c_{arphi \mathrm{t}}$	$t\overline{t}H,t\overline{t}l\nu,t\overline{t}l\overline{l},tl\overline{l}q$				
$^{\ddagger}O_{arphi \mathrm{ud}}^{(ij)}$	$(\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{d}_{j})$	$c_{arphi ext{tb}} + i c_{arphi ext{tb}}^I$	$t\overline{t}H,tl\overline{l}q,tHq$				
$^{\ddagger}O_{\mathrm{uW}}^{(ij)}$	$(\overline{\mathbf{q}}_{i}\sigma^{\mu\nu}\tau^{I}\mathbf{u}_{j})\tilde{\varphi}\mathbf{W}_{\mu\nu}^{I}$	$c_{ m tW} + i c_{ m tW}^I$	$t\overline{t}H,t\overline{t}l\nu,t\overline{t}l\overline{l},tHq,tl\overline{l}q$				
$^{\ddagger}O_{\mathrm{dW}}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \tau^I \mathbf{d}_j) \varphi \mathbf{W}^I_{\mu\nu}$	$c_{ m bW} + i c_{ m bW}^I$	$t\overline{t}H,t\overline{t}l\overline{l},tHq,tl\overline{l}q$				
$^{\ddagger}O_{\mathrm{uB}}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} \mathbf{u}_j) \tilde{\varphi} \mathbf{B}_{\mu\nu}$	$\begin{array}{l} (c_{\mathrm{W}}c_{\mathrm{tW}} - c_{\mathrm{tZ}})/s_{\mathrm{W}} + \\ i(c_{\mathrm{W}}c_{\mathrm{tW}}^{I} - c_{\mathrm{tZ}}^{I})/s_{\mathrm{W}} \end{array}$	$t\bar{t}H,t\bar{t}l\nu,t\bar{t}l\bar{l},tHq,tl\bar{l}q$				
$^{\ddagger}O_{\mathrm{u}G}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu\nu} T^A \mathbf{u}_j) \tilde{\varphi} G^A_{\mu\nu}$	$\mathbf{g_s}(c_{\mathrm{t}G}+ic_{\mathrm{t}G}^I)$	$t\bar{t}H,t\bar{t}l\nu,t\bar{t}l\bar{l},tHq,tl\bar{l}q$				

Operators involving two quarks and two leptons							
Operator	Definition	WC	Lead processes affected				
$O_{\ell { m q}}^{1(ijkl)}$	$(\overline{\ell}_i \gamma^{\mu} \ell_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_{\ell})$	$c_{Q\ell}^{-(\ell)} + c_{Q\ell}^{3(\ell)}$	$t\bar{t}l\mathbf{v},t\bar{t}l\bar{l},tl\bar{l}q$				
$O_{\ell { m q}}^{3(ijkl)}$	$(\overline{\ell}_i \gamma^\mu \tau^I \ell_j) (\overline{\mathbf{q}}_k \gamma^\mu \tau^I \mathbf{q}_\ell)$	$c_{Q\ell}^{3(\ell)}$	$t\overline{t}l\mathbf{v},t\overline{t}l\overline{l},tl\overline{l}q$				
$O_{\ell \mathrm{u}}^{(ijkl)}$	$(\overline{\ell}_i \gamma^\mu \ell_j) (\overline{\mathbf{u}}_k \gamma^\mu \mathbf{u}_\ell)$	$c_{\mathrm{t}\ell}^{(\ell)}$	${f t}{f ar t}{f l}{ar l}$				
$O_{ ext{e}\overline{ ext{q}}}^{(ijkl)}$	$(\overline{\mathbf{e}}_i \gamma^{\mu} \mathbf{e}_j) (\overline{\mathbf{q}}_k \gamma^{\mu} \mathbf{q}_\ell)$	$c_{Q\mathrm{e}}^{(\ell)}$	$t \bar{t} l \bar{l}, t l \bar{l} q$				
$O_{ m eu}^{(ijkl)}$	$(\overline{\mathbf{e}}_i \boldsymbol{\gamma}^{\mu} \mathbf{e}_j) (\overline{\mathbf{u}}_k \boldsymbol{\gamma}^{\mu} \mathbf{u}_{\ell})$	$c_{ m te}^{(\ell)}$	$t\overline{t}l\overline{l}$				
${^{\ddagger}O}_{\ell \rm equ}^{1(ijkl)}$	$(\overline{\ell}_i \mathbf{e}_j) \mathrel{\varepsilon} (\overline{\mathbf{q}}_k \mathbf{u}_\ell)$	$c_{\mathrm{t}}^{S(\ell)} + i c_{\mathrm{t}}^{SI(\ell)}$	$t \bar{t} l \bar{l}, t l \bar{l} q$				
$^{\ddagger}O_{\ell m equ}^{3(ijkl)}$	$(\overline{\ell}_i \sigma^{\mu\nu} \mathbf{e}_j) \varepsilon (\overline{\mathbf{q}}_k \sigma_{\mu\nu} \mathbf{u}_\ell)$	$c_{\mathrm{t}}^{T(\ell)} + i c_{\mathrm{t}}^{TI(\ell)}$	$t\overline{t}l\mathbf{v},t\overline{t}l\overline{l},tl\overline{l}q$				

Results:

- Simultaneous fit to the 16 WC and nuisance parameters using all 35 SR
- Post fit plot: increase in tHq is due to the low sensitivity to this process added to the fact that it receives large enhancements from the EFT operators considered

Results:

- Simultaneous fit to the 16 WC and nuisance parameters using all 35 SR
- One dim CL for all considered WC
- 2-d CL with other WC treated as unconstrained
- Results in agreement with SM

2016 data

Baseline Selection:

- Two leptons OS
- At least 1 jet
- Categorization in flavour, jet and b-tag multiplicity

Operators Involved:

$$O_{\phi \mathbf{q}}^{(3)} = (\phi^+ \tau^i D_\mu \phi) (\overline{\mathbf{q}} \gamma^\mu \tau^i \mathbf{q})$$

$$O_{\mathsf{tW}} = (\overline{\mathsf{q}}\,\sigma^{\mu\nu}\tau^i\mathsf{t})\tilde{\phi}\mathsf{W}^i_{\mu\nu},$$

$$O_{tG} = (\overline{q}\sigma^{\mu\nu}\lambda^a t)\tilde{\phi}G^a_{\mu\nu},$$

$$O_{G} = f_{abc} G_{\mu}^{a\nu} G_{\nu}^{b\rho} G_{\rho}^{c\mu},$$

$$O_{\mathrm{u(c)G}} = (\overline{q}\sigma^{\mu\nu}\lambda^{a}t)\tilde{\phi}G^{a}_{\mu\nu},$$

Eur Phy J. C. 2019 886

Discriminant variable

Eur Phy J. C. 2019 886

Total Yield to constrain C_G Dedicated Neural Networks to

- a) Separate tW vs. $t\bar{t} \rightarrow used$ in tW sensitive categories
- b) Spilt FCNC from SM bkg \rightarrow used to constrain C_{uG} , C_{cG} in 2 jets,1 tag categories

Results

Eur Phy J. C. 2019 886

NN outputs in each category or Yields (if no NN needed) used to perform a Likelihood fit Each parameter is fit at a time

First time tt and tW used in this kind of search

Top polarization and tt spin correlations

BSM predictions modify top chromomagnetic and chromoelectric dipole moment (CEDM and CMDM)

2016 data

Baseline Selection:

- Two leptons OS
- At least 2 jets (at least 1 b-tag)

Strategy:

Kinematic reconstruction of tt system

- All combinations of lep. and jets
- Constrains: $m_{W_{i}}$ MET from neutrinos, m_{top}
- Four momentum reconstructed Allows to use reconstruct angular observables

Unfolding to parton level to measure diff. cross-section using 22 observables

Phys. Rev. D 100, 072002

Angular observables:

Top polarization and tt spin correlations

This measurement of the spin correlations is sensitive to 11 dim-6 operators.

Phys. Rev. D 100, 072002

Limits are set on this operators by using simultaneous fits to measured norm, diff. x-sections.

Constrain CMDM

The operator responsible for anomalous

CMDM is: $O_{tG} = y_t g_S(\bar{Q}\sigma^{\mu\nu}T^at)\tilde{\phi}G^a_{\mu\nu},$

Constraints on Anomalous couplings

Limits on each coupling setting the

others to 0:

CEDM: $-0.33 < C_{tG}^I/\Lambda^2 < 0.20 \text{ TeV}^{-2}$

CP violating top coupling

Top interaction with chromo electric dipole moment (CEDM)

CMS-PAS-TOP-18-007

is a potential source of CP violation

$$\mathcal{L} = \frac{g_{\rm S}}{2} \bar{\mathbf{t}} T^a \sigma^{\mu\nu} (a_{\rm t}^{\rm S}) + i \gamma_5 (a_{\rm t}^{\rm S}) \bar{\mathbf{t}} G^{\mu\nu}$$
CP-odd CEDM

2016 data Baseline Selection:

- Two leptons OS
- At least 2 Jets
- At least 1 b-tag

Strategy:

Kinematic reconstruction of tt system

- All combinations of lep. and Jets
- Constrains: m_{W_i} MET from neutrions, m_{top}
- Four momentum reconstructed

Observables: Levi-civita of leptons, reconstructed (anti-)top (\mathcal{O}_1) and (anti-)b jets (\mathcal{O}_3)

CP violating top coupling

O_i are odd under CP transformations:

$$A_i = \frac{N(\mathcal{O}_i > 0) - N(\mathcal{O}_i < 0)}{N(\mathcal{O}_i > 0) + N(\mathcal{O}_i < 0)}.$$

The asymmetry (A) and the cross-section are simultaneously extracted from the fit

This allows to measure the CEDM, in agreement with SM

CMS-PAS-TOP-18-007

Summary

- LHC is now capable of measuring rare SM processes with top quarks.
- EFT measurements are key in the search for new physics @LHC.
- Precision measurements are needed for these BSM searches.
- Most of the analyses are not using the full Run 2 data yet.
- Many new analysis coming, so stay tuned!

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-

results/TOP/index.html

Thank You!

Back up

22

ttZ - EFT Interpretation

JHEP 03 (2020) 056

• Regions defined using $p_T(\mathbf{Z})$ and $cos(\theta_Z^*)$

N_ℓ	$N_{\rm b}$	N_{j}	$N_{\rm Z}$	$p_{\mathrm{T}}(Z)$ (GeV)	$-1 \le \cos \theta_{\rm Z}^* < -0.6$	$-0.6 \le \cos \theta_{\rm Z}^* < 0.6$	$0.6 \le \cos \theta_{\rm Z}^*$								
				0–100	SR1	SR2	SR3								
3	>1	≥3	1	100-200	SR4	SR5	SR6								
9	<u>_1</u>	_0	1	200–400	SR7	SR8	SR9								
				\geq 400	SR10	SR11	SR12								
				0–100		SR13									
4	≥ 1	≥ 1	1	100-200		SR14									
				≥200		SR15									
				0–100	CR1	CR2	CR3								
3	0	≥1	1	100-200	CR4	CR5	CR6								
3	U	≤ 1	1	200-400	CR7	CR8	CR9								
												$\geq \! 400$	CR10	CR11	CR12
				0–100		CR13									
4	≥ 0	≥1	2	100-200		CR14									
				≥200		CR15									

Coefficient	1	Expected		Observed		MS constraints	Indirect constraints
	68% CL	95% CL	68% CL	95% CL	Exp. 95% CL	Obs. 95% CL	68% CL
$c_{\rm tZ}/\Lambda^2$	[-0.7, 0.7]	[-1.1, 1.1]	[-0.8, 0.5]	[-1.1, 1.1]	[-2.0, 2.0]	[-2.6, 2.6]	[-4.7, 0.2]
$c_{\mathrm{tZ}}^{[I]}/\Lambda^2$	[-0.7, 0.7]	[-1.1, 1.1]	[-0.8, 1.0]	[-1.2, 1.2]	_	_	_
$c_{\phi \rm t}/\Lambda^2$	[-1.6, 1.4]	[-3.4, 2.8]	[1.7, 4.2]	[0.3, 5.4]	[-20.2, 4.0]	[-22.2, -13.0] [-3.2, 6.0]	[-0.1, 3.7]
$c_{\phi \mathrm{Q}}^-/\Lambda^2$	[-1.1, 1.1]	[-2.1, 2.2]	[-3.0, -1.0]	[-4.0, 0.0]	_	_	[-4.7, 0.7]

tīttī

2016 data Baseline Selection:

2ℓOS and single lepton final states

	ee	μμ	еμ	е	μ	
$m_{\ell\ell}$	>20 Ge\	/ + Z veto	> 20 GeV	-		
N _{jet}		≥4		≥8 ≥7		
N_{B-tag}		≥2		≥ 2		

Strategy:

BDT used to identify hadronic top decays. A second **BDT** is used to discriminate $t\bar{t}t\bar{t}$ from $t\bar{t}$. This takes as input the first BDT, event topology, event activity, N_{B-tag}

Combination with **EPJC 78 (2018) 140** (2016 multilepton):

$$\sigma = 13^{+11}_{-9} \; \text{fb}$$
 Observed (expected) significance = 1.4 (1.1)

JHEP 11 (2019) 082

2017 data Baseline Selection:

- 2 same sign, 3 and 4 leptons categories
- Jet and b-tag multiplicity used to categorize
- 35 signal regions

Selection	$2\ell ss$	S	$\geq 4\ell$	
Leptons	Exactly 2 leptons	Exactly	3 leptons	≥ 4 leptons
Charge requirements	$\sum_{\ell} q < 0, \sum_{\ell} q > 0$	$\sum_{\ell} q < 0, \sum_{\ell} q > 0$	_	
Jet multiplicity	$4, 5, 6, \geq 7 \text{ jets}$	$2, 3, 4, \geq 5 \text{ jets}$	$2, 3, 4, \geq 5 \text{ jets}$	$2, 3, \ge 4 \text{ jets}$
Number of b jets	≥ 2 b jets	$1, \geq 2$ b jets	$1, \geq 2$ b jets	≥ 2 b jets
Dilepton mass	_	$ m_{\ell\ell} - m_{\rm Z} > 10{\rm GeV}$	$ m_{\ell\ell} - m_{\rm Z} \le 10 {\rm GeV}$	_

Discriminant variable

Eur Phy J. C. 2019 886

- Total Yield to constrain C_G Dedicated Neural Networks to
- a) Separate tW vs. $t\bar{t} \rightarrow used$ in tW sensitive categories
- b) Spilt FCNC from SM bkg \rightarrow used to constrain C_{uG} , C_{cG} in 2 jets,1 tag categories

Table 3 Summary of the observables used to probe the effective couplings in various (n-jets,m-tags) categories in the ee, e μ , and $\mu\mu$ channels

Eff. coupling	Channel	Categories				
		1-jet, 0-tag	1-jet, 1-tag	2-jets, 1-tag	>2-jets, 1-tag	≥2-jets, 2-tags
C_{G}	ee	_	Yield	Yield	_	Yield
	eμ	Yield	Yield	Yield	_	Yield
	$\mu\mu$	_	Yield	Yield	_	Yield
$C_{\phi q}^{(3)}, C_{tW}, C_{tG}$	ee	_	NN_{11}	NN_{21}	_	Yield
	еμ	NN_{10}	NN_{11}	NN_{21}	_	Yield
	$\mu\mu$	_	NN_{11}	NN_{21}	_	Yield
C_{uG}, C_{cG}	ee	_	NN _{FCNC}			_
	eμ	_	NN _{FCNC}			_
	μμ	-	NN _{FCNC}			_

Discriminant variable

Eur Phy J. C. 2019 886

- Total Yield to constrain C_G Dedicated Neural Networks to
- a) Separate tW vs. $t\bar{t} \rightarrow used$ in tW sensitive categories
- b) Spilt FCNC from SM bkg \rightarrow used to constrain C_{uG} , C_{cG} in 2 jets,1 tag categories

Uncertainty	C_{G} (%)	$C_{\phi q}^{(3)}$ (%)	C_{tW} (%)	C_{tG} (%)	$C_{uG}\ (\%)$	C _{cG} (%)
Trigger	10.2	2.3	7.0	2.9	1.7	2.5
Lepton ident./isolation	7.4	1.1	1.2	23.0	<1	<1
Jet energy scale	<1	25.0	17.8	4.9	<1	<1
tW DS/DR	<1	24.2	4.4	3.0	7.6	7.8
ME/PS matching	<1	4.9	9.9	1.2	<1	<1
ISR scale	<1	5.0	5.6	<1	<1	<1
FSR scale	5.8	4.4	4.0	10.2	<1	<1
DY background	<1	7.5	5.5	21.5	<1	<1
Nonprompt background	<1	1.4	5.8	<1	<1	<1
Integrated luminosity	13.1	<1	1.1	18.8	<1	<1
Statistical	5.8	2.3	23.7	<1	72.6	73.6
MC statistical	<1	12.1	3.7	5.2	2.9	2.5

Top polarization and tt spin correlations

Constrain on Anomalous couplings

Limits on each coupling setting the

others to 0:

Coupling	Operator type	Symmetry properties		
$\hat{\mu}_t$	2 quarks plus gluon(s)	P-even, CP-even		
\hat{d}_t	2 quarks plus gluon(s)	P-odd, CP-odd		
$\hat{c}_{}$	2 quarks plus gluon(s)	P-odd, CP-odd		
\hat{c}_{-+}	2 quarks plus gluon(s)	P-even, CP-odd		
$\hat{c}_{ ext{VV}}$	4 quarks (weak isospin 0)	P-even, CP-even		
$\hat{c}_{ ext{VA}}$	4 quarks (weak isospin 0)	<i>P</i> -odd, <i>CP</i> -even		
$\hat{c}_{ ext{AV}}$	4 quarks (weak isospin 0)	<i>P</i> -odd, <i>CP</i> -even		
$\hat{c}_{ ext{AA}}$	4 quarks (weak isospin 0)	P-even, CP-even		
\hat{c}_1	4 quarks (weak isospin 1)	<i>CP</i> -even		
\hat{c}_2	4 quarks (weak isospin 1)	<i>CP</i> -even		
\hat{c}_3	4 quarks (weak isospin 1)	CP-even		

Phys. Rev. D 100, 072002

	95% C.L.	Theoretical unc.	χ^2	Coefficients
$\hat{\mu}_t$	$-0.014 < \hat{\mu}_t < 0.004$	±0.001	7	C_{kk} , C_{nn} , $C_{rk} + C_{kr}$, D
\hat{d}_t	$-0.020 < \hat{d}_t < 0.012$	• • •	9	B_2^r , B_1^n , $C_{nr} - C_{rn}$, $C_{nk} - C_{kn}$
$\hat{c}_{}$	$-0.040 < \hat{c}_{} < 0.006$	± 0.001	7	B_2^r , B_1^n , $C_{nr} - C_{rn}$, $C_{nk} - C_{kn}$
\hat{c}_{-+}	$-0.009 < \hat{c}_{-+} < 0.005$	• • •	11	$B_1^n, B_2^n, B_1^{r*}, C_{nk} + C_{kn}$
\hat{c}_{VV}	$-0.011 < \hat{c}_{VV} < 0.042$	± 0.004	7	$C_{kk}, C_{nn}, C_{rk} + C_{kr}, D$
$\hat{c}_{ ext{VA}}$	$-0.044 < \hat{c}_{\mathrm{VA}} < 0.027$	± 0.003	9	$B_2^k, B_2^r, C_{kk}, C_{nr} + C_{rn}$
$\hat{c}_{ ext{AV}}$	$-0.035 < \hat{c}_{AV} < 0.032$	± 0.001	6	$B_1^{k*}, B_2^{k*}, B_1^{r*}, B_2^{r*}$
\hat{c}_1	$-0.09 < \hat{c}_1 < 0.34$	± 0.04	7	$C_{kk}, C_{nn}, C_{rk} + C_{kr}, D$
\hat{c}_3	$-0.35 < \hat{c}_3 < 0.21$	± 0.02	9	$B_2^k, B_2^r, C_{kk}, C_{nr} + C_{rn}$
$\hat{c}_1 - \hat{c}_2 + \hat{c}_3$	$-0.17 < \hat{c}_1 - \hat{c}_2 + \hat{c}_3 < 0.15$	±0.01	6	$B_1^{k*}, B_2^{k*}, B_1^{r*}, B_2^{r*}$