Triplet Charged Higgs at the LHC

Pheno 2021, University of Pittsburgh

EPJC 80 (2020) 8, 715, PRD 103 (2021) 1, 015025 In collaboration with A. Costantini and S. Jangid

SM+Real Triplet

SM with a Y=0 real SU(2) triplet

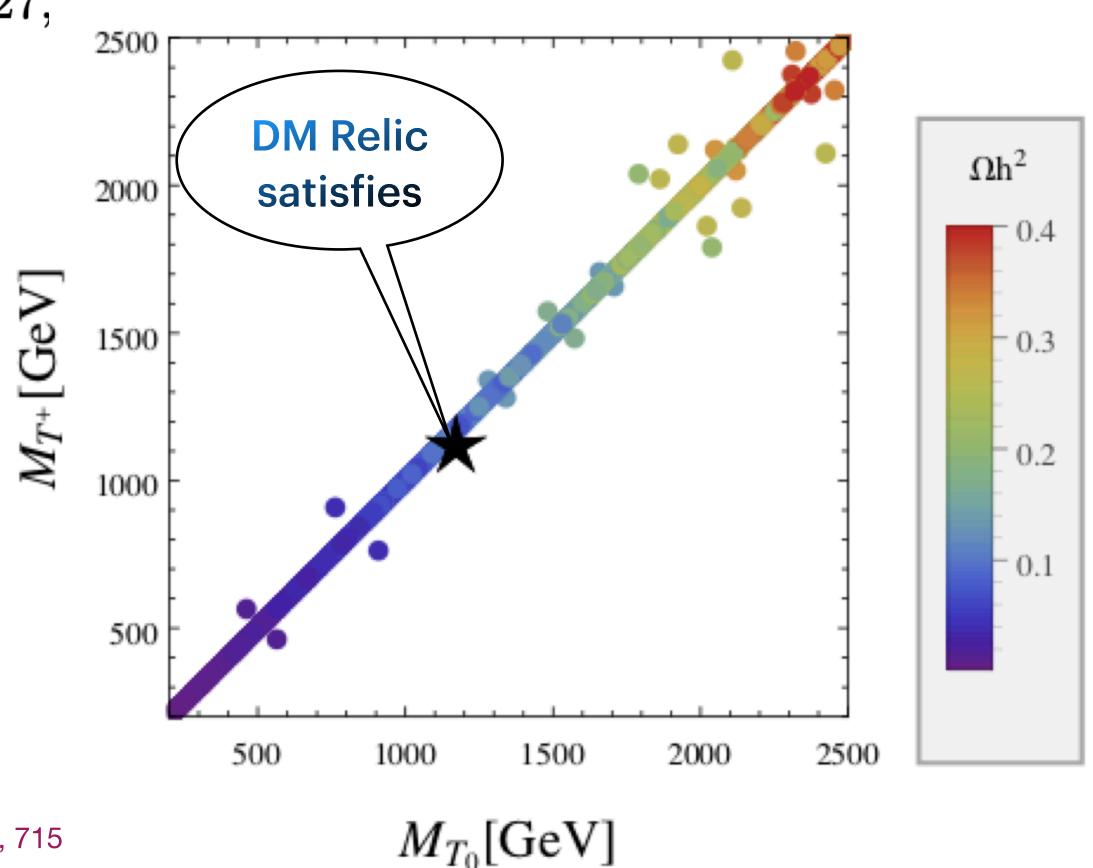
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad T = \begin{bmatrix} \frac{T^0}{\sqrt{2}} & T^+ \\ T^- & -\frac{T^0}{\sqrt{2}} \end{bmatrix}$$

$$V(\Phi, T) = m_{\Phi}^2 \Phi^{\dagger} \Phi + m_T^2 Tr(T^{\dagger} T) + \lambda_1 |\Phi^{\dagger} \Phi|^2$$

+ $\lambda_2 (Tr|T^{\dagger} T|)^2 + \lambda_3 \Phi^{\dagger} \Phi Tr(T^{\dagger} T) + A(\Phi^{\dagger} T \Phi)$

- EWSB condition: $\phi^0 = v_1 + \phi_r^0 + iG^0 \text{ and } T^0 = v_T + T_r^0$
- Doublet Particle spectrum: $h_1(h_{125}), h_2(\sim T^0), H^\pm(\sim T^\pm)$ Triplets
- $A(\Phi^{\dagger}T\Phi)$ term causes the mixing between doublet and triplet
- Triplets do not couple to fermions: as no SU(2) gauge invariant vertex is possible.

Inert Triplet


• If the triplet field is odd under Z_2 then potential takes a form

$$V(\Phi, T) = m_{\Phi}^2 \Phi^{\dagger} \Phi + m_T^2 Tr(T^{\dagger} T) + \lambda_1 |\Phi^{\dagger} \Phi|^2 + \lambda_2 (Tr|T^{\dagger} T|)^2 + \lambda_3 \Phi^{\dagger} \Phi Tr(T^{\dagger} T)$$

- Triplet does not get vev and neutral component T^0 can become lightest inert particle (ITP) and a candidate dark matter.
- In this case triplet and doublet does not mix at all.
- Both T^0 , T^{\pm} are pure triplets and do not couple to fermions directly
- T⁰ does not couple to Z boson also
- There is no tree-level mass splitting between
- At one-loop the mass splitting is $\Delta m(T^\pm,\,T^0)=m_{T^\pm}-m_{T^0}=166\,{
 m MeV}$

Constraints from DM relic

- The dominating annihilation channel for T^0 is $T^0T^0 \to W^\pm W^\mp$
- The sub-dominant co-annihilation is $T^0T^\pm \to ZW^\mp$
- The DM relic satisfies at $\Omega_{\rm DM}h^2=0.1199\pm0.0027,$
- This gives strict lower bound of 1176 GeV on the DM mass

Charged Higgs Phenomenology

- The charged Higgs cannot directly decay to τ , ν or t, τ
- However, having SU(2) charged it couples to W^{\pm} boson
- Due to less mass gap, it has three body decays: $T^{\pm} \to (W^{\pm})^* T^0 \to \ell + \not p_T, \, 2j + \not p_T$
- This leads to displaced rest mass decay length of the order of meter
- The searches in LHC and other collider may depend on the details below

Masses in GeV	Decay Modes	BR in %	Decay Width in GeV	Decay Length in m
$M_{T_0} = 1178.60$	$T^{\pm} ightarrow T_0 ar{d}u$	72.72	7.58×10^{-17}	2.64
$M_T^{\pm} = 1178.76$	$T^{\pm} o T_0 \nu \ell^{\pm}$	24.30	1.56 × 10	2.04

• The relevant production modes can be $pp \to T^\pm T^\mp, \, T^\pm T^0$

Displaced mono-lepton plus missing energy

- Due to TeV scale mass and purely electroweak processes, the crosssections are small
- One can only expect healthy numbers at 100 TeV collider
- A demand of $n_\ell \geq 1 + 1\,\mathrm{mm} \leq \mathrm{d} \leq 10\,\mathrm{m}$

with a displaced charged lepton can probe such scenario with early data at the LHC/FCC at 100 TeV

- The addition of scalar also enhances the vacuum stability
- Bounds can come from perturbativity More @HiggsIV by Shilpa Jangid

Complex Y=0 Triplet

we consider a complex triplet with Y = 0 hypercharge, namely

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} t_0 & \sqrt{2} t_1^+ \\ \sqrt{2} t_2^- & -t_0 \end{pmatrix}$$
. $(t_1^+)^* \neq t_2^-$ and t_0 is also complex.

• The scalar potential is given by $V = V_1 + V_2$,

$$V_1 = \mu^2 \Phi^\dagger \Phi + \frac{\lambda_H}{2} \Phi^\dagger \Phi \Phi^\dagger \Phi + m_T^2 \operatorname{tr}[T^\dagger T] + \frac{\lambda_T}{2} \operatorname{tr}[T^\dagger T] \operatorname{tr}[T^\dagger T] + \frac{\lambda_{T'}}{2} \operatorname{tr}[T^\dagger T] T^\dagger T + \frac{\lambda_{T'}}{2} \operatorname{tr}[T^\dagger T] + \frac{\lambda_{T'}}{2} \operatorname{tr}[T^\dagger T] T^\dagger T + \frac{\lambda_{T'}}{2} \operatorname{tr}[T^\dagger T] T + \frac{\lambda_{$$

$$\begin{split} V_2 \; = \; \left(m_T'^2 \, \mathrm{tr}[T\,T] + \frac{\lambda_T^{(2)}}{2} \mathrm{tr}[T\,T\,T] + \frac{\lambda_T^{(3)}}{2} \mathrm{tr}[T^\dagger T\,T] \right) \\ + \frac{\lambda_{HT}^{(2)}}{2} \Phi^\dagger \Phi \, \mathrm{tr}[T\,T] \right) + \mathrm{h.c.}. \end{split}$$

• The EWSB conditions: $\Phi_0 = \frac{1}{\sqrt{2}} (v + \phi_0 + i \, \sigma_0), \qquad t_0 = \frac{1}{\sqrt{2}} \left(v_T + \phi_0^t + i \, \sigma_0^t \right).$

$$ho^{\mathrm{ex}} = 1.00038 \pm 0.00020, \implies v_T \lesssim 5 \; \mathrm{GeV} \; .$$

Complex Y=0 Triplet: Pseudoscalar

- Unlike real Y=0 triplet, it has a pseudosclar
- The Physical pseudo scalar is pure triplet $a_P = \sigma_0^t$.
- The mass of the pseudo scalar is

$$m_{a_P}^2 = \kappa_{HT} \frac{v^2}{2v_T} - 4m_T^{\prime 2} - \lambda_{HT}^{(2)} v^2 - (4\lambda_T^{(2)} + \lambda_T^{(3)})v_T^2,$$

- Being Y=0, it does not couple to fermions and Z boson
- Being speudoscalar it does not couple to $W^{\pm}W^{\mp}, ZZ$
- Corresponding loop-level couplings are also zero
- Thus without any additional discrete symmetry a_P is promoted as the dark matter candidate

Complex Y=0 Triplet: CP-even neutral Higgs boson

For CP-even scalar both doublet and triplet fields mix

$$h_D = \frac{1}{N_{h_D}} \Big((8 v^2 \kappa_{HT}^3 + \dots) \phi_0 + 16 \kappa_{HT}^3 v v_T \phi_0^t \Big),$$

$$h_T = \frac{1}{N_{h_T}} \Big((-2\kappa_{HT} v_T + (\lambda_{HT} + 2\lambda_{HT}^{(2)} - 4\lambda_H) v_T^2) \phi_0 + \kappa_{HT} v \phi_0^t \Big).$$

With masses

$$\begin{split} m_{h_D}^2 &= \lambda_H v^2 - 2\kappa_{HT} \, v_T + 2 \left(\lambda_{HT} + 2\lambda_{HT}^{(2)} - 2\lambda_H \right) v_T^2, \\ m_{h_T}^2 &= \frac{\kappa_{HT}}{2v_T} \left(v^2 + 4v_T^2 \right) + \left(4\lambda_H - 2\lambda_{HT} - 4\lambda_{HT}^{(2)} + \lambda_T + \frac{\lambda_{T'} 2}{+} 2(\lambda_T^{(2)} + \lambda_T^{(3)}) \right) v_T^2 \end{split}$$

• The model parameters get constraints from the recent Higgs boson mass and branching measurements at ATLAS and CMS experiments at the LHC

P.Bandyopadhyay, A Costantini: PRD103 (2021) 1, 015025

Complex Y=0 Triplet: Charged Higgs boson

• The charged Higgs spectrum is more complex with h_0^\pm as charged Goldstone

$$h_T^+ = \frac{2v_T}{\sqrt{v^2 + 4v_T^2}} \phi^+ + \frac{2v}{\sqrt{2}\sqrt{v^2 + 4v_T^2}} (t_2^-)^* + \frac{2v}{\sqrt{2}\sqrt{v^2 + 4v_T^2}} t_1^+,$$

$$h_P^+ = -\frac{1}{\sqrt{2}} (t_2^-)^* + \frac{1}{\sqrt{2}} t_1^+,$$

$$h_0^+ = -\frac{v}{\sqrt{v^2 + 4v_T^2}} \phi^+ + \frac{\sqrt{2}v_T}{\sqrt{v^2 + 4v_T^2}} (t_2^-)^* + \frac{\sqrt{2}v_T}{\sqrt{v^2 + 4v_T^2}} t_1^+.$$

- h_T^{\pm} Is the orthogonal to Glodstone is a mixed but mostly triplet charged Higgs
- h_P^{\pm} stays as pure triplet charged Higgs and does not couple to fermions
- The mass spectrum looks like $m_{h_T^\pm}^2 = \kappa_{HT} \left(\frac{v^2}{2 \, v_T} + 2 \, v_T \right),$

$$m_{h_P^{\pm}}^2 = \kappa_{HT} \frac{v^2}{2 v_T} - 4 m_T'^2 - \lambda_{HT}^{(2)} v^2 - (2 \lambda_T^{(2)} + \lambda_T^{(3)} + \frac{\lambda_{T'}}{2}) v_T^2$$

With a tree-level splitting with the pseudo scalar

$$m_{h_P^{\pm}}^2 - m_{a_P}^2 = \left(2\lambda_T^{(2)} + \frac{\lambda_{T'}}{2}\right)v_T^2$$

Decays of the Charged Higgs bosons

• Odd number of pure state in a vertex i.e. a_P or h_P^{\pm} , vanishes

$$g_{a_P h_{i=P, T}^+ W^-} = -\frac{g_L}{2} \left(\mathcal{R}_{21}^P \mathcal{R}_{i1}^C - \sqrt{2} \mathcal{R}_{22}^P (\mathcal{R}_{i2}^C - \mathcal{R}_{i3}^C) \right),$$

$$g_{Z h_{i=P, T}^+ W^-} = -\frac{i}{2} g_L \left(g_Y v \sin \theta_W \mathcal{R}_{i1}^C + \sqrt{2} g_L v_T \cos \theta_W (\mathcal{R}_{i2}^C - \mathcal{R}_{i3}^C) \right).$$

- $g_{a_P h_T^+ W^-}$, $g_{Z h_P^+ W^-}$ vanish but $g_{Z h_T^+ W^-}$ remains non-zero.
- Appearance of pure states twice makes the vertices non-zero [e.g. $a_P h_P^+ W^-$
- The pure triplet nature acts effectively as an odd number in a discrete symmetry

Z_3 Symmetric limit

- In the Z_3 symmetric limit $T o e^{rac{2\pi i}{3}}T$ and others remain invariant
- The V_2 part of the potential goes to zero leaving

$$m_{a_P}^2 = \kappa_{HT} rac{v^2}{2 \, v_T}, \quad m_{h_P^\pm}^2 = \kappa_{HT} rac{v^2}{2 \, v_T} + rac{\lambda_{T'}}{2} v_T^2, \quad m_{h_T^\pm}^2 = \kappa_{HT} \left(rac{v^2}{2 \, v_T} + 2 \, v_T
ight)$$

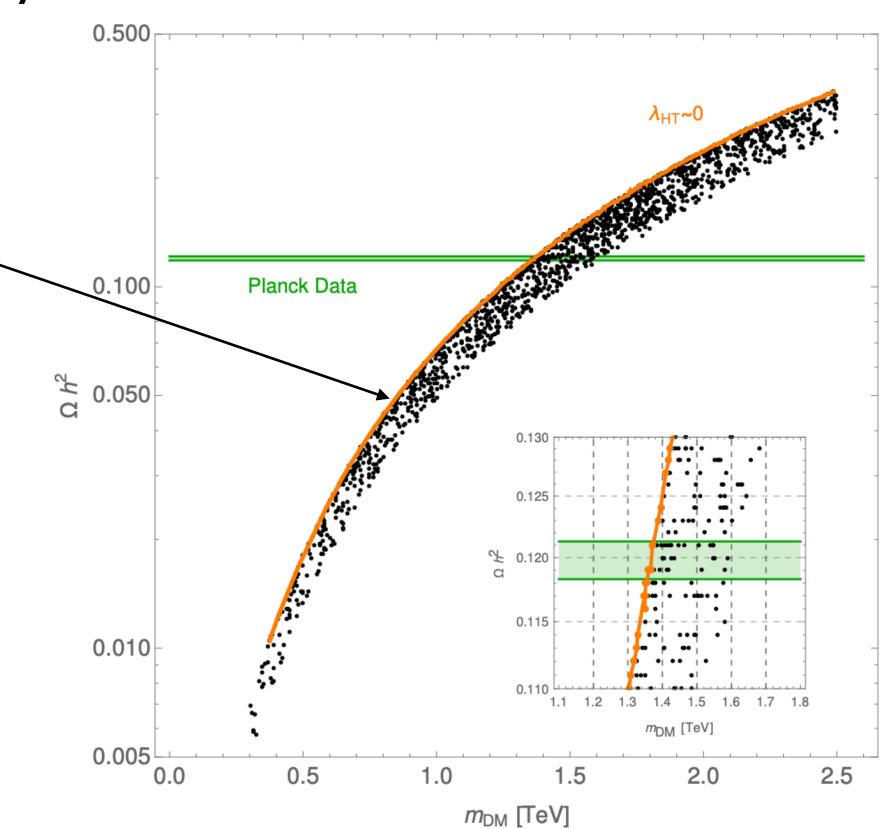
- In the limit of $\lambda_{T'} \to 0$, the pure pseudo scalar and pure charged Higgs are degenerate at the tree-level
- An one-loop splitting of 166 MeV between h_P^{\pm} , a_P comes as the real triplet case
- However, mass splitting between h_T^{\pm}, a_P can be larger proportional to $2\kappa_{HT}v_T$
- h_P^{\pm} gives rise to displaced charged lepton
- h_T^{\pm} Have prompt decays

Custodial Limit

- In the Custodial limit $v_T o 0$ and we get $ho \equiv 1$
- The mass spectrum and fields take the following form

$$\begin{split} m_{h_D}^2 &= \lambda_H v^2, \quad h_D = \phi_0, \\ m_{h_T}^2 &= m_T^2 + 2m_T'^2 + \frac{1}{2}(\frac{\lambda_{HT}}{2} + \lambda_{HT}^{(2)})v^2, \quad h_T = \phi_0^t, \\ m_{a_P}^2 &= m_T^2 - 2m_T'^2 + \frac{1}{2}(\frac{\lambda_{HT}}{2} - \lambda_{HT}^{(2)})v^2, \quad a_P = \sigma_0^t, \\ m_{h_{T/P}}^2 &= m_T^2 \pm 2m_T'^2 + \frac{1}{2}(\frac{\lambda_{HT}}{2} \pm \lambda_{HT}^{(2)})v^2, \quad h_{T/P}^+ = \frac{1}{\sqrt{2}}(t_1^+ \pm (t_2^-)^*). \end{split}$$

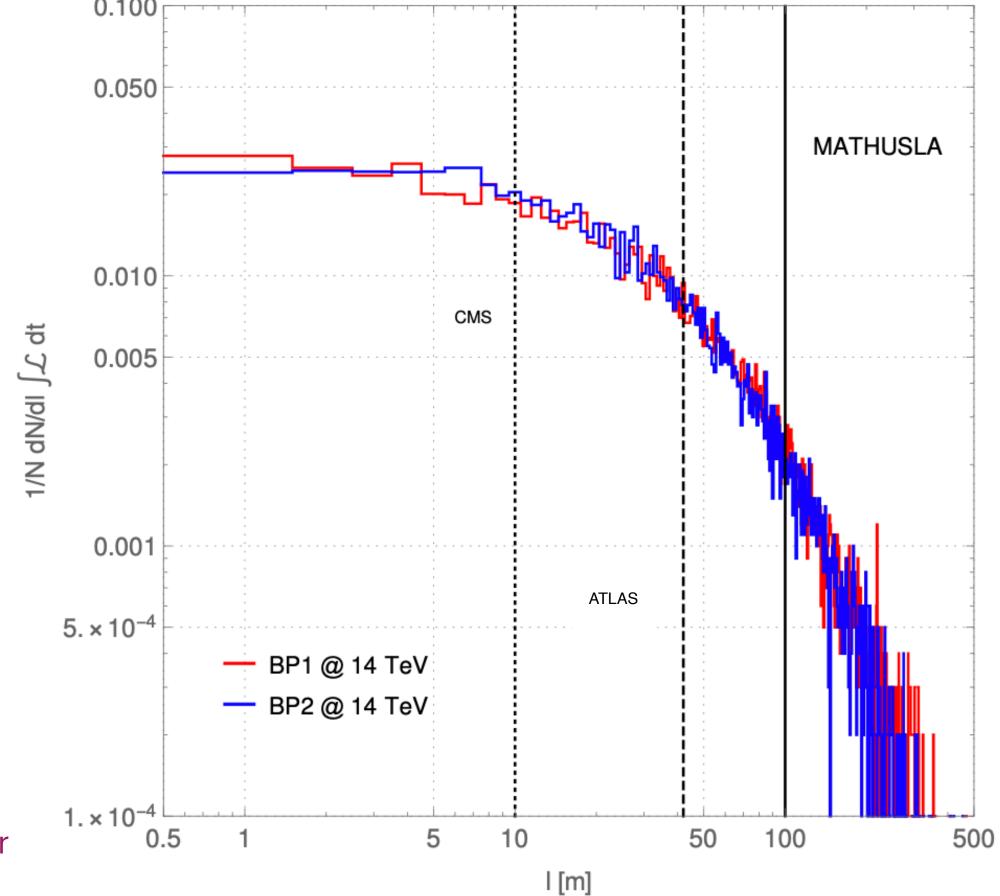
- Both the charged Higgs bosons are pure triplet and none decays to ZW
- In the Z_3 limit h_T^{\pm} , h_P^{\pm} become degenerate with a_P , h_T at the tree-level


Dark Matter Phenomenology

- From Higgs data we get a lower bound of $h_{T/P}^{\pm} \gtrsim 600\,\mathrm{GeV}$
- Similar to the real triplets dominant annihilation modes is $a_P a_P o W^\pm W^\mp$
- The co-annihilation mode is $a_P h_P^\pm o Z W^\mp$
- However, $\sigma(a_P h_T^{\pm} \to ZW^{\mp}) = 0$ due to purity non-conservation
- This implies

$$m_{DM}^{min} \equiv m_{a_P}^{min} \sim 1.35 \, \mathrm{TeV},$$

corresponds to the $\lambda_{HT} \sim 0$ case.


• Whereas
$$m_{DM}^{max} \equiv m_{a_P}^{max} \sim 1.60\,\mathrm{TeV}$$

LHC Phenomenology

- The existence of two triplet charged Higgs bosons but phenomenologically different $h_T^\pm,\,h_P^\pm$
- h_T^{\pm} has prompt decay with dominant modes $Br(h_T^+ \to W^+ Z) \sim Br(h_T^+ \to W^+ h_D) \sim 0.48$.
- h_T^{\pm} decays to the is restricted to ~ 4%
- h_P^{\pm} Has displaced decay of width $\sim 10^{-16}\,{\rm GeV}$ $h_P^{\pm} \to a_P(W^{\pm})^*$, where the W^{\pm} remains off-shell.
- Along with LHC muon collider can also probe the triplet charged Higgs bosons with

$$rac{\sigma_{\mu}^{14\,{
m TeV}}(X)}{\sigma_{p}^{14\,{
m TeV}}(X)} = 10^4 - 10^2$$
 $\sigma_{\mu}^{14\,{
m TeV}}(X) \,\gtrsim\, 10^2\,\sigma_{p}^{100\,{
m TeV}}(X)$

More @BSMV by A. Costantini on 26/05: (New) Physics at multi-TeV muon Collider

Conclusions

- The real Y=0, triplet gives rise to one charged Higgs with displaced decay
- The complex Y=0, triplet gives rise to one displaced and one prompt decays of Charged Higgs bosons
- For the real case to have a dark matter we need a \mathbb{Z}_2 symmetry
- In case of complex Y=0 triplet, purity of triplet behaves like a discrete symmetry
- Displaced Mono/di-lepton plus missing energy can probe the real Y=0 triplet
- Existence of both displaced and prompt lepton plus missing energy can probe
 Y=0 complex triplet
- Muon collider and be promising along with the LHC

THANK You!