First result on cosmological first-order phase transitions with LIGO-Virgo's three observing run data

Huaike Guo

University of Oklahoma

May 25, 2021

Phys. Rev. Lett. 126, 151301 (arxiv:hep-ph/2102.01714), Alba Romero, Katarina Martinovic, Thomas A. Callister, Huai-Ke Guo, Mario Martínez, Mairi Sakellariadou, Feng-Wei Yang, and Yue Zhao

subgroup of the LIGO scientific collaboration

Probing BSM Physics with Gravitational Waves

High energy frontier (LHC, etc)

Precision frontier (EDM, MDM, etc)

New Physics

Cosmic frontier (CMB, etc)

Dark matter searches (direct, indirect, etc)

Gravitational waves

- ✓ cosmological FOPT (O3 done, this talk)
- ✓ cosmic strings (O3 done)

 arxiv:gr-qc/2101.12248 (PRL accepted)
- dark matter direct detection at LIGO (O3 done)
 O1, (Nature) Commun.Phys. 2 (2019) 155
 O3, to appear in a few days

Most primordial gravitational waves are stochastic (SGB).

Characterizing Stochastic Gravitational Waves

For stochastic GWs that is Gaussian, stationary, isotropic and unpolarized,

$$\langle \tilde{h}_A^*(f,\hat{\mathbf{n}})\tilde{h}_{A'}(f',\hat{\mathbf{n}}')\rangle = \delta(f-f')\frac{\delta^2(\hat{\mathbf{n}},\hat{\mathbf{n}}')}{4\pi}\delta_{AA'}\frac{1}{2}S_h(f)$$

$$\longrightarrow \Omega_{\mathrm{gw}}(f) = \frac{4\pi^2}{3H_0^2}f^3S_h(f)$$

Cosmological First Order Phase Transition (FOPT)

Bubble Collisions

Envelope Approximation

Simulations:

Kosowsky, Turner, Watkins, Kamionkowski PRL69,2026(1992), PRD45,4514(1992), PRD47,4372(1993), PRD49,2837(1994) Huber, Konstandin, JCAP09(2008)022 Analytical Modelling:

Beyond the Envelope Approximation

Jinno, Takimoto, PRD95,024009(2017)

Bulk flow model: Konstandin, JCAP03(2018)047, Jinno, Takimoto, JCAP01(2019)060

Direct large scalar lattice simulations: Cutting, Escartin, Hindmarsh, Weir, PRD97,123513(2018), arXiv:2005.13537:

negligible (dominant) when other sources are present (absent)

$$\Omega_{\text{coll}}(f)h^{2} = 1.67 \times 10^{-5} \Delta \left(\frac{H_{\text{pt}}}{\beta}\right)^{2} \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^{2}$$
$$\times \left(\frac{100}{g_{*}}\right)^{1/3} S_{\text{env}}(f),$$

Consider a scenario when BC is dominant

$$f_{\rm env} = 16.5 \left(\frac{f_{\rm bc}}{\beta}\right) \left(\frac{\beta}{H_{\rm pt}}\right) \left(\frac{T_{\rm pt}}{100 \text{ GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} \mu \text{Hz},$$

Sound Waves

Numerical Simulations:

Hindmarsh, Huber, Rummukainen, Weir, PRL112, 041301 (2014), PRD92, 123009 (2015), PRD96, 103520 (2017)

Analytical Modelling(sound shell model)

Minkowski: Hindmarsh, 120, 071301 (2018)

Hindmarsh, Hijazi, JCAP12(2019)062

FLRW: HG,Sinha,Vagie,White,JCAP 01 (2021) 001

- Solve the fluid velocity profile
 modes: detonation, deflagration, hybrid
 Espinosa, Konstandin, No, Servant (JCAP06,028)
- Reduction found for alpha~1 and small vw
 Cutting, Hindmarsh, Weir, PRL125, 021302 (2020)

$$\Omega_{\rm sw}(f)h^2 = 2.65 \times 10^{-6} \left(\frac{H_{\rm pt}}{\beta}\right) \left(\frac{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{1/3}$$
$$\times v_w \left(\frac{f}{f_{\rm sw}}\right)^3 \left(\frac{7}{4+3(f/f_{\rm sw})^2}\right)^{7/2} \Upsilon(\tau_{\rm sw}),$$

The dominant source for a FOPT in a thermal plasma.

Consider a scenario with this dominant (SW).

$$\Upsilon = 1 - (1 + 2\tau_{\rm sw}H_{\rm pt})^{-1/2}$$
 (RD)

HG,Sinha,Vagie,White,JCAP 01 (2021) 001

Previous formula mistakenly enforces an infinite lifetime.

Generic Properties

Both can be approximated by a broken power law.

Peak frequency is determined by the mean bubble separation, and redshifting (Temperature).

Temperature LIGO is sensitive to

10^6 ~ 10^9GeV

Alves, Ghosh, HG, Sinha, Vagie, JHEP04,052(2019)

Broken Power Law Model

We thus also consider a generic broken power law model.

$$\Omega_{\mathrm{BPL}}(f) = \Omega_* \left(\frac{f}{f_*}\right)^{n_1} \left[1 + \left(\frac{f}{f_*}\right)^{\Delta}\right]^{(n_2 - n_1)/\Delta}$$

- n1: low f power, fixed to be 3, (causality)
- n2: high f power, -4(SW), -1(BC), not entirely determined, will vary in the range (-8,0)
- Omega*, f*, reference amplitude and frequency.
- Δ =2 (SW), 4(BC), fixed to be 2 which gives a more conservative result

In all models (BPL, SW, BC), we also consider the non-negligible CBC contribution.

$$\Omega_{
m CBC} = \Omega_{
m ref} (f/f_{
m ref})^{2/3}$$
 $f_{
m ref} = 25 \;
m Hz$

The Cross-Correlation Method

- The standard method of searching for SGB
- Remove majority of noises specific to a single interferometer

cross-correlation estimator

$$\langle \hat{C}^{IJ}(f) \rangle = \Omega_{\rm GW}(f)$$

 $\hat{C}^{IJ}(f) = \frac{2}{T} \frac{\text{Re}[\tilde{s}_I^{\star}(f)\tilde{s}_J(f)]}{\gamma_{IJ}(f)S_0(f)}$ O1, O2 and O3 data from interferometer I(J): (H, L, V)

overlap reduction function

For more details on the cross-correlation analysis, see the LIGO, Virgo and KAGRA collaboration paper arxiv:gr-qc/2101.12130

The Bayesian Analysis Framework

calibration uncertainty

Gaussian noise

Likelihood

$$\log p(\hat{C}_{IJ}(f)|\boldsymbol{\theta}_{\mathrm{gw}},\lambda) \propto -\frac{1}{2} \sum_{f} \frac{\left[\hat{C}_{IJ}(f) - \lambda \Omega_{\mathrm{gw}}(f,\boldsymbol{\theta}_{\mathrm{gw}})\right]^{2}}{\sigma_{IJ}^{2}(f)}$$

 $\sigma_{IJ}^2(f) \approx \frac{1}{2T\Delta f} \frac{P_I(f)P_J(f)}{\gamma_{IJ}^2(f)S_0^2(f)}$ Priors for two analysis strategies:

broken power law

$$\Omega_{\text{bpl}}(f) = \Omega_* \left(\frac{f}{f_*}\right)^{n_1} \left[1 + \left(\frac{f}{f_*}\right)^{\Delta}\right]^{(n_2 - n_1)/\Delta}$$

Broken power law model				
Parameter	Prior			
$\Omega_{ m ref}$	$LogUniform(10^{-10}, 10^{-7})$			
Ω_*	$LogUniform(10^{-9}, 10^{-4})$			
f_*	Uniform(20, 256 Hz)			
n_1	3			
n_2	Uniform(-8,0)			
Δ	2			

sound waves, or bubble collision

Phenomenological model				
Parameter	Prior			
$\Omega_{ m ref}$	$LogUniform(10^{-10}, 10^{-7})$			
lpha	LogUniform $(10^{-3}, 10)$			
$eta/H_{ m pt}$	LogUniform $(10^{-1}, 10^3)$			
$T_{ m pt}$	LogUniform $(10^5, 10^9 \text{ GeV})$			
$v_{ m w}$	1			
$\kappa_{\phi} \ \kappa_{ m sw}$	1			
$\kappa_{ m sw}$	$f(\alpha, v_{\rm w}) \in [0.1 - 0.9]$			

9

Broken Power Law Searches

No Evidence for BPL Signal

$$\log \mathcal{B}_{\text{noise}}^{\text{CBC+BPL}} = -1.4$$

$$\log \mathcal{B}_{\text{noise}}^{\text{BPL}} = -0.78$$

$$\log \mathcal{B}_{\text{CBC}}^{\text{CBC+BPL}} = -0.81$$

95% CL UL with fixed n2

Bubble Collision + CBC

No Evidence for Bubble Collision Signal

95% CL UL with fixed Tpt and beta/Hpt

Pl	nenomenologi	cal model (bu	ubble collision	ns)
		$\Omega_{\rm coll}^{95\%}(25~{ m Hz})$		
$\beta/H_{\rm pt} \backslash T_{\rm pt}$	10 ⁷ GeV	10 ⁸ GeV	10 ⁹ GeV	10 ¹⁰ GeV
0.1	9.2×10^{-9}	8.8×10^{-9}	1.0×10^{-8}	7.2×10^{-9}
1	1.0×10^{-8}	8.4×10^{-9}	5.0×10^{-9}	
10	4.0×10^{-9}	6.3×10^{-9}		

no sensitivity

11

Sound Waves + CBC

No Evidence for Sound Waves Signal

95% CL UL with fixed Tpt and beta/Hpt

$$\Omega_{\rm sw}(25~{\rm Hz})~5.9\times10^{-9}$$

$$\beta/H_{\rm pt} < 1$$
 and $T_{\rm pt} > 10^8 {
m GeV}$

Summary

The first search for GW from cosmological FOPT with LIGO data was performed.

- (Bayesian) analysis with combined O1, O2 and O3 data.
- Searches done for 3 models: broken power law, bubble collisions, sound waves
 In all cases, CBC background are included.
- No evidence for such stochastic GWs
- Upper limits set

We would like to thank Pat Meyers for allowing us to use his code and Alberto Mariotti for his useful comments.

Summary

The first search for AW from cosmological FOPT with LIGO data was performed.

- (Bayesian) analysis with composition of O1, O2 and O3 data.
- Searches done for 3 models: broken power(law/bubble collisions, sound waves OUDE AND CHECK! In all cases, CBC background are included.
- No evidence for such stochastic GWs
- Upper limits set

We would like to thank Pat Meyers for allowing us to use his code and Alberto Mariotti for his useful comments.

Thanks!