Resonant neutrino self-interactions in astrophysical spectra

Pheno 2021, May 25, 2021

Jeff Hyde Bowdoin College Work w/
Cyril Creque-Sarbinowski
& Marc Kamionkowski

Motivations

• It's tough to constrain some neutrino properties (e.g. $u_{ au}$ interactions)

• Neutrino self-interactions are popular to consider: $\mathcal{L}_{int} = g_{ij}\phi v_i v_j$

e.g. Araki et al. 1409.4180 & 1508.07471, Barenboim et al. 1903.02036, Jones & Spitz 1911.06342, Ng & Beacom 1404.2288, Bustamante et al. 2001.04994, Blinov et al. 1905.02727, Mazumdar et al. 2011.13685, Carpio et al. 2104.15136, Das & Ghosh 2011.12315, Choudhury et al. 2012.07519

• Existing / upcoming neutrino experiments (Super-K, IceCube, POEMMA, ...)

Source of primary flux

Propagation

Flux spectrum at Earth

Also considered in: We generalize to: Farzan & Palomares-Ruiz 1401.7019, Ibe & Kaneta 1407.2848, Jeong et al. 1803.04541 Arbitrary self-coupling matrix Closed-form solution (avoids time-Neutrino from some intensive numerics). astrophysical source Two outgoing neutrinos (lowers energy but adds a neutrino to spectrum) Cosmic background neutrinos ($C\nu B$)

$$\frac{\partial \Phi_i}{\partial t} = H\Phi_i + HE \frac{\partial \Phi_i}{\partial E} + S_i(t, E)$$

$$\frac{\partial \Phi_i}{\partial t} = \left[H \Phi_i + H E \frac{\partial \Phi_i}{\partial E} + S_i(t, E) - \Gamma_i(t, E) \Phi_i \right] + \left[S_{tert, i}(t, E) \right]$$

Expansion

Scattering events remove neutrinos from the primary spectrum. (Γ is rate.)

 $\Phi_i(t, E)$ = specific flux of ν_i (number per conformal time, per comoving area, per energy)

Source term for primary flux.

The tertiary source term represents reinjection of neutrinos after scattering.

 $\Phi_i(t, E)$ = specific flux of ν_i (number per conformal time, per comoving area, per energy)

Source term for primary flux.

neutrinos from the primary spectrum. (Γ is rate.)

The tertiary source term represents reinjection of neutrinos after scattering.

Neutrino selfinteractions found here

CCS, JH, MK, Phys. Rev. D 103, 023527, arXiv:2005.05332

Expansion

Resonant $\nu - \nu$ scattering

• Resonant scattering dominant – we take a Breit-Wigner form.

• In many cases, this can be well-approximated as a delta function (e.g. width less than detector energy resolution).

$$\Phi_{i}(t,E) = \int_{-\infty}^{t} dt' \left(\frac{a(t)}{a(t')}\right) e^{-\tau_{i}(t',t,E)} \left[\tilde{S}_{i}\left(t',\frac{a(t)}{a(t')}E\right)\right]$$

Optical depth depends on form of neutrino self-coupling matrix...

 $ilde{S}_i = S_i + S_{tertiary}$, w/ tertiary source dep. on self-coupling matrix, and $ilde{S}_i$ evaluated at higher resonant energy, ...

$$\Phi_{i}(t,E) = \int_{-\infty}^{t} dt' \left(\frac{a(t)}{a(t')}\right) e^{-\tau_{i}(t',t,E)} \left[\tilde{S}_{i}\left(t',\frac{a(t)}{a(t')}E\right)\right]$$

Optical depth depends on form of neutrino self-coupling matrix...

 $ilde{S}_i = S_i + S_{tertiary}$, w/ tertiary source dep. on self-coupling matrix, and $ilde{S}_i$ evaluated at higher resonant energy, ...

Details here are pretty involved for such a short talk... See paper.

Inputs: Result:

Primary source term – depends on physics of source (e.g. supernova neutrinos)

Analytic calculation

Spectrum that arrives at Earth

Neutrino self-coupling matrix – depends on new physics model

Above highest resonant energy, spectrum unaffected by self-interactions.

Above highest resonant energy, spectrum unaffected by self-interactions.

Event rates, +/- 1 sigma for 10 years at Super-K w/ gadolinium.

Comparison with expected spectrum at T = 8 MeV in absence of self-interactions.

Forecasted 1-sigma constraints on coupling & scalar mediator, for 10 years at Super-K w/ gadolinium.

Summary

• Efficient way to calculate observed spectra, given a source and model of neutrino self-interactions.

 Observation of the DSNB by Super-K can constrain neutrino selfinteractions with ~ keV masses.

 (In paper) High-Energy Astrophysical Neutrinos at IceCube: can constrain ~ MeV mediators.