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Introduction

An important aspect of string theory is the finitess of the loop
amplitudes (Polchinski, 1998).

In this context, an infinite derivative non-local approach was
motivated starting from string field theory.

Attempts where made to address the divergence problem in QFT by
generalizing the kinetic energy operators of the Standard Model (SM)
to an infinite series of higher order derivatives suppressed by a scale of
non-locality.

They have been explicitly shown to be ghost-free (Buoninfante,
2018), predicting conformal invariance in the UV, trans-planckian
scale transmutation and dark matter phenomenology (Ghoshal, 2018,
Buoninfante, 2018).

We study them in a strong coupling regime with recently devised
techniques (Frasca&Ghoshal, 2020, 2021).

Recently, a reciprocity principle has been proposed to get non-local
theories from first principles (Buoninfante, 2021).
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Scalar field theory

We consider the following non-local scalar field theory

L = −φ(x)ef (�)�φ(x)− λ
4φ

4(x) + j(x)φ(x).

Then, we perform the change of field variable

φ̃(x) = e−
1
2
f (�)φ(x)

that yields our working action

L = −φ(x)�φ(x)− λ

4

[
e

1
2
f (�)φ(x)

]4
+ j(x)e

1
2
f (�)φ(x).

The non-locality introduces a mass-scale factor M that grants an UV-finite
theory.
In the limit of the mass-scale factor running to infinity, the local theory is
properly recovered.
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SU(N) Gauge Theory

We also consider the following SU(N) gauge theory (Tomboulis, 1997)

L = −1
4 tr F aµνef (D

2)F a
µν + c̄aDab

µ ∂µcb + η̄aca + c̄aηa + jaµA
aµ.

We have set for the covariant derivative

Dab
µ = δab∂µ + igAc

µ(T c)ab.

and for the gauge potentials one has

F a
µν = ∂µA

a
ν − ∂νAa

µ + gf abcAb
µA

c
ν .

The mass-scale M here is a scale for both the magnitude of the gauge
fields and of the space-time gradients.
In the limit of the mass-scale factor running to infinity, the local theory is
properly recovered.
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Bender-Savage-Milton Technique and Dyson-Schwinger
equations

Bender-Savage-Milton technique (1999) is a methodology to derive
the Dyson-Schwinger set of equations for the correlation functions of
a given theory in a differential form.

In the local case, both the scalar field theory and the SU(N) gauge
theory can be solved exactly yielding, in principle, the full set of
correlation functions (Frasca, 2017). LSZ theorem grants the
observables of the given theories.

1P- and 2P-functions are exactly evaluated but nP-functions can be
computed exactly as well.

For our cases, this amounts to work with a background field being the
solution of the given equation for the 1P-function. Different choices
are also possible.
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Exact solutions for the local scalar field theory: G1

1P-function for the local λφ4 theory is given by

G1(x) = µ

(
2

λ

)
sn(p · x + θ, i),

where µ and θ are two integration constants and given the following
dispersion relation

p2 = µ2
√
λ

2
.

At this stage we have omitted a mass shift arising from mass
renormalization. Anyway, this becomes important when one needs to
evaluate the spectrum of the theory.
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Exact solutions for the local scalar field theory: G2

Similarly, for the 2P-function one gets in momenta space

G2(p) =
4π3

K 3(i)

∞∑
n=0

(2n + 1)2
e−(n+ 1

2)π

1 + e−(2n+1)π

1

p2 −m2
n + iε

with a mass spectrum

mn = (2n + 1)
π

2K (i)
(λ/2)

1
4 µ.

Again, we are neglecting a mass shift in the spectrum. This will yield a
gap equation that is not essential for our aims.
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1P-function for non-local scalar theory

Bender-Milton-Savage extends naturally to the non-local case. In this
case, Dyson-Schwinger equations cannot be solved exactly but just around
the local solution. So, one us or the 1P-function

φNL(x) = φ(x) +

∫
d4yG2(x − y)δφ(y) + . . .

where

δφ(x) = −µ3
(

2λ

9

) 1
4 4π3

3K 3(i)

[ ∞∑
n=1

Cn(x)

]
+

µ3
(

2λ

9

) 1
4

[
1− 4π3

3K 3(i)

e−
3π
2

(1 + e−π)3
e
3f

(
− π2

4K2(i)
p2

)]
sin3

(
π

2K (i)
(p · x + θ)

)
.

Cn(x) are some coefficients obtained through product of series of known
terms (Frasca&Ghoshal, 2020).
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2P-function for non-local scalar theory

2P-function can be written in the form

G2(k) = G
(c)
2 (k)

1

1 + δm2
0e

f (−k2)G
(c)
2 (k)

,

where the shift δm2
0 can then be computed by the gap equation

δm2
0 = 3λ

∫
d4k

(2π)4
G2(k).

and

G
(c)
2 (k) =

ef (−k
2)

k2 + m2
0e

2f (−k2)

1

1− Π(k)
.

Mass gap gets diluted by non-locality and higher order excitations are
moved far away in the spectrum making them possibly not observable.
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Non-local mass gap
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Figure: Plot of the mass gap solution as a function of m0. The mass gap gets
damped in the UV. We see for M being O(10 TeV), the curves do not change
appreciably reaching the local limit M →∞.
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1P- and 2P-function for non-local gauge theory

We apply the mapping theorem between scalar field theory and gauge
theory, taking into account that λ→ Ng2, therefore

G a
1µ(x) = ηaµG1(x)

where we introduced the η-symbols. Similarly, in the Landau gauge,

G ab
2µν(k) = δab

(
ηµν −

kµkν
k2

)
G2(k)

provided the gap equation

δm2
0 = 2Ng2

∫
d4k

(2π)4
G2(k).

Again, we have a diluted mass gap and higher excited states moved far
away in the spectrum.
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Confinement

Confinement can be proven for non-local gauge theory (Frasca,
Ghoshal, Okada, in preparation).

The beta function is obtained with the technique devised in
(Frasca&Chaichian, 2018) based on BRST and Kugo-Ojima
confinement criterion.

We aim to apply this technique to quantum gravity to confine the
ghost states like in R2 theories, impeding them to propagate.

Also, this would have implications for the behavior of cosmological
and black hole singularities.
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Future perspectives

These results can find straight-forwardly wide applications in modern
cosmology, like one particular application for the scale free theory
comesin the context of cosmological inflation.

The mass gap together with the mass-scale M will play a significant
role in breaking the scale invariance, as well as creating the observed
density fluctuations in the cosmic microwave background radiation.

For dark energy models with scalar fields, the mass gap in the theory
acts as source of current cosmic acceleration but it could have been
damped in early universe, due to the exponentially damping from the
presence of non-local scale M in the UV, thereby offering an
explanation for the fine-tuning problem.
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Conclusions

The mass gap and the spectrum of the states is completely changed
in the non-local theory with respect to the local scenario.

Dyson-Schwinger approach can be straightforwardly extended from
the local field theory to the infinite-derivative case.

We showed that the non-local scale M is responsible for no-extra
poles in the propagator even in the non-perturbative regime.

In the UV, beyond the scale of non-locality M, the mass gap
generated gets exponentially suppressed and the theory and the other
higher excited states are far detached in the UV, possibly beyond the
non-locality limit.

In the limit of the mass scale going to infinity, known results are
recovered.
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