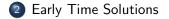
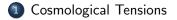
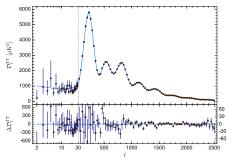

A Dark Sector to Restore Cosmological Concordance


Itamar J. Allali

Phenomenology 2021 Symposium University of Pittsburgh


May 24, 2021

Based on work with M.P. Hertzberg and F. Rompineve 2104.12798

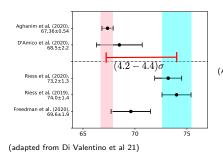


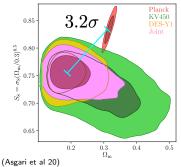
CMB Observations

Leading description of expansion history is ACDM model

(from Planck 18 results, Aghanim et al 18)

Fits CMB data very well


6 inferred parameters: $\omega_{b}, \omega_{cdm}, A_{s}, n_{s}, \tau_{reio}, H_{0}$


Agrees with other early probes (BAO, LSS)

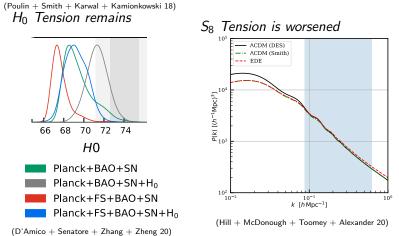
Dark Sector Model

Tensions with Late(r) Probes

- Hubble rate of expansion H_0
- Early and late-time probes disagree
- E.g. SH_0ES and TRGB

 Related to matter fluctuations in 8 Mpc/h sphere (today)

•
$$S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$$



EDE Constrained by LSS

Early dark energy (EDE) followed by rapid decay increases H_0

1 Cosmological Tensions

2 Early Time Solutions

Late Time Matter Supression

Ultra light Axion (ULA) DM behaves like CDM except:

• Scale dependent sound speed

$$c_s^2 = \frac{k^2}{4a^2m_a^2} \quad \text{for} \quad H \ll \frac{k}{a} \ll m_a \tag{1}$$

(Khlopov et al 85, Hu 98, Hwang + Noh 09 . . .)

• Suppresses scales smaller than axion Jeans scale at equality

$$k > k_{J,eq} \sim 0.1 \frac{h}{\text{Mpc}} \sqrt{\frac{m_a}{10^{-26} \,\text{eV}}}$$
 (2)

(see Hlozek et al 14, Kobayashi et al 17. . .)

• Mixed ULA and CDM scenario could fit data better

Dark Sector Model

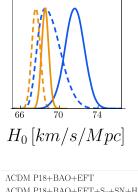
A Dark Sector to Restore Concordance

A two component phenomenological model:

Decaying Dark Energy (DDE)

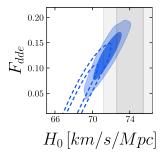
- Rapidly decays at z_{dde} with EOS $w = -1 \rightarrow > 1/3$
- Modeled as triggered decay of New EDE (Niedermann + Sloth 19, 20)
- Makes up $F_{dde} \equiv \rho_{dde} / \rho_{tot}$ at z_{dde}

Ultra-light Axion (ULA)


- Standard cosine potential, generic I.C.
- Begins oscillations at *z_a*, fixes the mass
- Makes up fraction of DM $r_a \equiv \Omega_a / (\Omega_a + \Omega_{cdm})$

We fix w = 2/3, z_a ($m_a \sim 10^{-26}$ eV), leaving F_{dde} , z_{dde} , r_a free MCMC using MontePython sampler (Audren et al 12, Brinckmann + Lesgourgues 18)

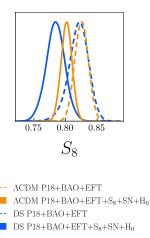
Use modified CLASS, merge of TriggerCLASS and AxiCLASS (Blas + Lesgourgues + Tram 11 | Niedermann + Sloth 19, 20 | Poulin et al 18, Smith et al 19)

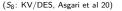

Dark Sector Model

Dark Sector (DS) Results

Tension with SH_0ES :

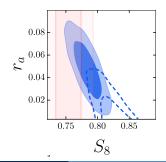
	ΛCDM	DS
$w/o SH_0ES$	4.3σ	3.0 σ
w/SH_0ES	3.7σ	1.4σ

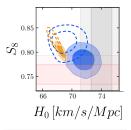

----- ACDM P18+BAO+EFT ACDM P18+BAO+EFT+S₈+SN+H₀ ----- DS P18+BAO+EFT DS P18+BAO+EFT+S₈+SN+H₀


(EFT: PyBird, D'Amico + Senatore + Zhang 20)

(H₀: SH₀ES, Riess et al 19)

Dark Sector Model


Dark Sector (DS) Results



Tension with KV/DES :

	ΛCDM	DS	
w/o S_8 prior	3 .2 σ	2.8 <i>σ</i>	
w/ S_8 prior	2.6σ	1.4σ	
w/ all priors	2.2σ	1.2σ	

Summary

- Tensions between early and late universe probes hint at new ingredients
- Early-time modifications of ACDM constrained by LSS
- Dark sector with oscillating scalar DM and decaying dark energy components addressed H_0 , S_8 tensions
- Questions: microphysical model, nonlinearities for mixed DM universe

	ΛCDM		DS	
	w/o priors	w/ priors	w/o priors	w/ priors
H_0 Tension	4.3σ	3.7 σ	3.0 <i>o</i>	1.4σ
S_8 Tension	3.2σ	2.2σ	2.8σ	1.2σ