Electroweak Phase Transition with an SU(2) Dark Sector

In collaboration with Tathagata Ghosh, Huai-ke Guo, Tao Han $\carXiv:2010.12109\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:2010.12100\carSiv:20100\carSiv:2010\ca$

Hongkai Liu

University of Pittsburgh

Pheno 2021 May 24. 2021

Two big events in the past decade

- The discover of Higgs boson in 2012 completed the SM
- Gravitational waves predicted by GR was observed in 2015

Unsolved questions

Dark matter

Baryon asymmetry

Electroweak baryogenesis

To alter the EW phase transition pattern, the new physics must couple to the Higgs field

SU(2) dark sector and Higgs portal

Dark sector = dark SU(2) gauge sector + dark scalar sector

Dark scalar sector consists of two real scalar triplets: $\Phi_1,\,\Phi_2$

$$\Phi_1 = \frac{1}{\sqrt{2}} (\omega_1, \, \omega_2, \, v_1 + \omega_3)^T, \quad \Phi_2 = \frac{1}{\sqrt{2}} (\varphi_1, \, v_2 + \varphi_2, \, \varphi_3)^T$$

Lagrangian

Total Lagrangian can be written as

$$\begin{aligned}
\mathscr{L} &= \mathscr{L}_{\rm SM} + \mathscr{L}_{\rm portal} + \mathscr{L}_{\rm DS}, \\
-\mathscr{L}_{\rm SM} \supset V_{\rm SM} &= m_H^2 |H|^2 + \frac{\lambda_H}{2} |H|^4, \\
-\mathscr{L}_{\rm portal} \supset V_{\rm portal} &= \lambda_{H11} |H|^2 |\Phi_1|^2 + \lambda_{H22} |H|^2 |\Phi_2|^2, \\
\mathscr{L}_{\rm DS} &= -\frac{1}{4} \tilde{W}^a_{\mu\nu} \tilde{W}^{a\mu\nu} + |D_\mu \Phi_1|^2 + |D_\mu \Phi_2|^2 - V_{\rm DS},
\end{aligned}$$

Z2 symmetries are imposed: $\Phi_1
ightarrow -\Phi_1, \ \Phi_2
ightarrow -\Phi_2$

$$V_{\rm DS} = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 |\Phi_1|^2 |\Phi_2|^2 + \lambda_5 |\Phi_1|^2 |\Phi_1|$$

We set $v_1 = 0$ to partially break dark SU(2) into dark U(1)

$$\Phi_1 = \frac{1}{\sqrt{2}} (\omega_1, \, \omega_2, \, v_1 + \omega_3)^T, \quad \Phi_2 = \frac{1}{\sqrt{2}} (\varphi_1, \, v_2 + \varphi_2, \, \varphi_3)^T$$

φ₁ and φ₃ are eaten by dark gauge bosons to form two massive vector DM
 ω₁, ω₂, and ω₃ are three massive scalar DM
 φ₂ mixes with the SM Higgs

Higgs signal rate

Higgs phenomenology

High mass region
 W mass corrections
 [arXiv:1406.1043]

Medium mass region
 Di-boson searches (ggF and VBF)
 [arXiv:1808.02380]

• Low mass region

LEP and LHC ($\sqrt{s}=7~{
m TeV}$) [arXiv:1502.01361]

Benchmark points

Criteria:

(1) Vacuum stability, partial wave unitarity, and electroweak precision measurements.

(2) Higgs, DM and DR phenomenology bounds.

(3) Strong first-order phase transition and produce strong GW signal.

DM Masses ordering

$$m_{\tilde{W}^+} \ll m_{\omega^+} \lesssim m_{\omega_2}$$

Parameters	BM1	BM2
$\sin heta$	-0.25	-0.12
$ ilde{g}$	0.094	0.133
$m_{ ilde W^\pm}$	$94 {\rm GeV}$	$133 { m GeV}$
m_{h_2}	$200 { m GeV}$	$290 {\rm GeV}$
$m_{\omega^{\pm}}$	$1.2 { m TeV}$	$1.3 { m TeV}$
m_{ω_2}	$2.0 { m TeV}$	1.9 TeV
λ_1	3.5	3.5
λ_{H11}	2.0	2.0
λ_3	3.0	3.5
λ_H	0.28	0.27
λ_2	3.8×10^{-2}	8.3 × 10 ⁻² $ $
λ_{H22}	2.4×10^{-2}	3.2×10^{-2}
λ_4	5.0	4.0
v_2	1 TeV	1 TeV

Phenomenology constraints

 $\Delta \kappa_3 = \frac{\kappa_{111} - \kappa_{111}^{\rm SM}}{\kappa_{111}^{\rm SM}} = -1 + \cos^3\theta + \frac{v_h}{v_2}\sin^3\theta$

2%@30 TeV muon collider [arXiv:2008.12204]

Procedure of gravitational wave calculations

Portal parameters

For electroweak phase transition

 $S_3(T_n)/T_n \simeq 140~{
m [gr-qc/0107033]}$

The inverse of phase transition duration

$$\frac{\beta}{H_n} = T \frac{d(S_3/T)}{dT} |_{T=T_n}$$

Portal parameters

For electroweak phase transition

 $S_3(T_n)/T_n \simeq 140~{
m [gr-qc/0107033]}$

The inverse of phase transition duration

$$\frac{\beta}{H_n} = T \frac{d(S_3/T)}{dT} |_{T=T_n}$$

The ratio of the latent heat to the total radiation density

$$\alpha = \frac{e_s(T_s) - e_b(T_s)}{\rho_{\mathrm{rad},s}} = \frac{1}{\rho_{\mathrm{rad},s}} \left[T\frac{\partial\Delta V}{\partial T} - \Delta V\right] = \frac{\epsilon}{\rho_{\mathrm{rad},s}}$$

The efficiency factor indicates how much of the latent heat can go to the fluid kinetic energy

$$\kappa(\alpha, v_w) = \frac{\rho_{fl}(\alpha, v_w)}{\epsilon}$$

[arXiv:1004.4187]

Phase transition pattern

Phase transition pattern

Benchmark points

We use CosmoTransitions

to solve the bounce solutions

The	sma	ller	β	$/H_n$
IIIC	Sinai		P	/ II n

and larger lpha

result in stronger GWs signal

Parameters	BM1	BM2
$\sin \theta$	-0.25	-0.12
$\qquad \qquad $	0.094	0.133
$ m_{ ilde W^{\pm}}$	$94 \mathrm{GeV}$	$133 { m GeV}$
$ $ m_{h_2}	$200 \mathrm{GeV}$	$\left 290 \text{ GeV} \right $
$ m_{\omega^{\pm}}$	1.2 TeV	1.3 TeV
m_{ω_2}	$2.0 \mathrm{TeV}$	1.9 TeV
$ $ λ_1	3.5	3.5
λ_{H11}	2.0	2.0
λ_3	3.0	3.5
λ_H	0.28	0.27
λ_2	3.8×10^{-2}	8.3 × 10 ⁻² $ $
λ_{H22}	2.4×10^{-2}	3.2×10^{-2}
λ_4	5.0	4.0
v_2	1 TeV	1 TeV
$\boxed{\qquad \qquad \Omega_{\tilde{W}^{\pm}}h^2}$	0.096	0.12
$\sigma_{\rm SI}~({\rm cm}^2)$	$ 7.8 \times 10^{-47}$	8.0×10^{-47}
$T_c \; (\text{GeV})$	177	252
$T_n (\text{GeV})$	147	234
β/H_n	297	760
α	0.32	5.1×10^{-2}
phase transition pattern	2-step	3-step

GW spectrum

BM1: SNR = 1.08×10^2 (LISA), SNR = 8.56×10^2 (BBO) BM2: SNR = 9.95×10^{-3} (LISA), SNR = 8.25 (BBO)

Conclusions

•The two stable massive gauge bosons associated with the broken dark gauge group and the pseudo-Goldstone boson can serve as cold DM candidates.

•We have found both the two-step and three-step phase transitions with the cooling of the universe. Due to the rich vacuum pattern, the scalar sectors can introduce a strong FOPT, for the benchmark points BM1 with a successful EW FOPT, and BM2 with a FOPT in the dark sector.

•We found that the two-step EWPT in our BM1 can produce strong GW signals and can be detectable using the future space-based interferometers LISA and BBO, while the GW signal for BM2 may be difficult to observe at LISA due to the rather low signal-tonoise ratio.

Thanks!

Back-up slides

Phenomenological constraints

Vacuum stability:
$$\lambda_H > 0$$
, $\lambda_1 > 0$, $\lambda_2 > 0$,
 $\lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} > 0$,
 $\lambda_{H11} + \sqrt{\lambda_H \lambda_1} > 0$, $\lambda_{H22} + \sqrt{\lambda_H \lambda_2} > 0$.

Partial wave unitarity:

$$\begin{aligned} |\lambda_{H}| < 8\pi, \quad |\lambda_{H11}| < 8\pi, \quad |\lambda_{H22}| < 8\pi, \\ |\lambda_{3} - \frac{1}{2}\lambda_{4}| < 8\pi, \quad |\lambda_{3} + \frac{1}{2}\lambda_{4}| < 8\pi, \quad |\lambda_{3} + 2\lambda_{4}| < 8\pi, \\ |\lambda_{1} + \lambda_{2} - \sqrt{(\lambda_{1} - \lambda_{2})^{2} + \lambda_{4}^{2}}| < 16\pi, \quad |\lambda_{1} + \lambda_{2} + \sqrt{(\lambda_{1} - \lambda_{2})^{2} + \lambda_{4}^{2}}| < 16\pi, \\ |\text{Eigenvalues}[\mathcal{P}]| < 8\pi, \end{aligned}$$

where

$$\mathcal{P} = \frac{1}{2} \begin{pmatrix} 5\lambda_1 & 3\lambda_3 + \lambda_4 & 2\sqrt{3}\lambda_{H11} \\ 3\lambda_3 + \lambda_4 & 5\lambda_2 & 2\sqrt{3}\lambda_{H22} \\ 2\sqrt{3}\lambda_{H11} & 2\sqrt{3}\lambda_{H22} & 6\lambda_H \end{pmatrix}.$$

Mass spectrum

Scalar sector

$$-\mathscr{L}_{\text{scalar}}^{\text{mass}} \supset \frac{1}{2} \mathbf{h}^T \mathbf{M}_{\mathbf{h}} \mathbf{h} + \frac{1}{2} m_{\omega_2}^2 \omega_2^2 + m_{\omega^{\pm}}^2 \omega^+ \omega^-$$

Fields definition: $\mathbf{h} = \{h_0, \varphi_2\}$ $\omega^+ \equiv \frac{\omega_1 - i\omega_3}{\sqrt{2}}, \quad \omega^- \equiv \frac{\omega_1 + i\omega_3}{\sqrt{2}}.$

Dark scalar masses:
$$\mathbf{M_h} = \begin{pmatrix} \lambda_H v_h^2 & \lambda_{H22} v_2 v_h \\ \lambda_{H22} v_2 v_h & \lambda_2 v_2^2 \end{pmatrix}$$

$$\mathcal{R}\mathbf{M}_{\mathbf{h}}\mathcal{R}^{T} = \begin{pmatrix} m_{h_{1}}^{2} & 0\\ 0 & m_{h_{2}}^{2} \end{pmatrix} \quad \text{with} \quad \mathcal{R}(\theta) = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$m_{\omega^{\pm}}^{2} = \frac{1}{2} (\lambda_{3} v_{2}^{2} + 2m_{11}^{2} + \lambda_{H11} v_{h}^{2})$$
$$m_{\omega_{2}}^{2} = \frac{1}{2} ((\lambda_{3} + \lambda_{4}) v_{2}^{2} + 2m_{11}^{2} + \lambda_{H11} v_{h}^{2})$$

Mass spectrum

Dark gauge sector

$$-\mathscr{L}_{\text{vector}}^{\text{mass}} \supset \frac{1}{2} m_{\tilde{W}}^2 \sum_{i=1,3} \tilde{W}_i^2 = m_{\tilde{W}^{\pm}}^2 \tilde{W}^+ \tilde{W}^-$$

Fields definition:
$$\tilde{W}^+ \equiv \frac{\tilde{W}_1 - i\tilde{W}_3}{\sqrt{2}}, \ \tilde{W}^- \equiv \frac{\tilde{W}_1 + i\tilde{W}_3}{\sqrt{2}}$$

Dark gauge boson masses: $m_{ ilde W^\pm} = ilde g v_2$

Dark radiation: \tilde{W}_2

DM-self interacting mediated by massless DR can resolve the small-scale structure problems of the cold and collision-less DM.

Dark matter annihilation

 $\tilde{W}^+ \tilde{W}^- \to W^+ W^-, ZZ, \bar{t}t, h_1 h_1, h_1 h_2, h_2 h_2, \tilde{W}_2 \tilde{W}_2,$ $\omega^+ \omega^- \to W^+ W^-, ZZ, \bar{t}t, h_1 h_1, h_1 h_2, h_2 h_2, \tilde{W}^+ \tilde{W}^-, \tilde{W}_2 \tilde{W}_2,$ $\omega_2 \omega_2 \to W^+ W^-, ZZ, \bar{t}t, h_1 h_1, h_1 h_2, h_2 h_2, \tilde{W}^+ \tilde{W}^-, \omega^+ \omega^-.$

Dark matter relic density

DM relic density can be estimated by

$$\Omega_{\rm DM} h^2 = 1.07 \times 10^9 \frac{x_f \,\,{\rm GeV}^{-1}}{(g_{*S}/\sqrt{g_*})M_{pl}\langle\sigma v_{\rm rel}\rangle} \qquad x_f \equiv m_\chi/T_f \qquad \text{[arXiv: 0810.5126]}$$

$$x_f = \ln \left[0.038 \frac{g}{\sqrt{g_*}} M_{pl} m_\chi \langle \sigma v_{\rm rel} \rangle \right] - \frac{1}{2} \ln \ln \left[0.038 \frac{g}{\sqrt{g_*}} M_{pl} m_\chi \langle \sigma v_{\rm rel} \rangle \right]$$

The s-wave annihilation cross section at leading order

$$\langle \sigma v_{\rm rel} \rangle = \frac{1}{32\pi} \frac{\sqrt{1 - 4M_W^2/s}}{m_\chi^2} |M_{\rm annihilation}(s)|^2 \qquad \text{[Nucl. Phys. B 310 (1988) 693]}$$

Dark matter direct detection

The effective interactions of DM with light quarks and gluons

$$\mathscr{L}_{q,g}^{\text{eff}} = \sum_{q=u,d,s} f_q^{\chi} m_q \chi \chi \bar{q} q + f_G^{\chi} \chi \chi \frac{\alpha_s}{\pi} G^{a\mu\nu} G^a_{\mu\nu}$$

 f_q^{χ} is the effective couplings between DM and light quarks

$$\begin{split} f_q^{\tilde{W}^{\pm}} &= \tilde{g}^2 \frac{v_2}{v_h} \sin \theta \cos \theta (\frac{1}{m_{h_2}^2} - \frac{1}{m_{h_1}^2}), \\ f_q^{\omega^{\pm}} &= \frac{1}{v_h} (\frac{c_2 \cos \theta}{m_{h_2}^2} - \frac{c_1 \sin \theta}{m_{h_1}^2}), \\ f_q^{\omega_2} &= \frac{1}{v_h} (\frac{d_2 \cos \theta}{m_{h_2}^2} - \frac{d_1 \sin \theta}{m_{h_1}^2}). \end{split}$$

The coupling between DM and gluon comes from the effective coupling after integrating-out of heavy quarks

$$f_G^{\chi} = -\frac{1}{12} \sum_{Q=c,b,t} f_Q^{\chi} = -\frac{1}{4} f_q^{\chi}$$

Dark matter direct detection

To obtain the DM-nucleon scattering cross section, we have to evaluate the DM-quark operator in the nucleon matrix elements.

$$\langle N|m_q\bar{q}q|N\rangle \equiv f_{Tq}^N m_N, \ \langle N|\frac{\alpha_s}{\pi}GG|N\rangle = -\frac{8}{9}m_N f_{TG}^N$$

The effective interactions of DM and nucleon

$$\mathscr{L}_N^{\text{eff}} = f_N^{\chi} \chi \chi \bar{N} N \qquad f_N^{\chi} = m_N \left(\sum_{q=u,d,s} f_{Tq}^N f_q^{\chi} - \frac{8}{9} f_{TG}^N f_G^{\chi}\right)$$

The mass-fraction parameters

[arXiv: 1305.0237]

$$f_{Td}^p = 0.0191, f_{Tu}^p = 0.0153, f_{Ts}^p = 0.0447, f_{TG}^p \equiv 1 - \sum_{q=u,d,s} f_{Tq}^p = 0.925$$

The spin-independent cross section of DM with nucleon can be calculated with

$$\hat{\sigma}_{\rm SI}^{\chi} = \frac{1}{\pi} \left(\frac{m_N}{m_{\chi} + m_N} \right)^2 (f_N^{\chi})^2 \qquad \sigma_{\rm SI} = \left(\frac{\Omega_{\chi} h^2}{\Omega_{\rm obs} h^2} \right) \hat{\sigma}_{\rm SI}^{\chi}$$

Effective potential at finite temperature

The dynamics of the phase transition is determined by the effective potential at the finite temperature. At high temperature approximation: $y \equiv m/T \ll 1$

$$V^{(1)}(T) = V_{\text{tree}} + \Delta V^{(1)}(T)$$
$$\Delta V^{(1)}(T) = \frac{T^4}{2\pi^2} \left\{ \sum_b n_b J_B[\frac{m_b^2(\phi_i)}{T^2}] - \sum_f n_f J_F[\frac{m_f^2(\phi_i)}{T^2}] \right\}$$

$$V_S(T) = \frac{m_H^2(T)}{2}h_0^2 + \frac{\lambda_H}{8}h_0^4 + \frac{m_{11}^2(T)}{2}\omega_3^2 + \frac{\lambda_1}{8}\omega_3^4 + \frac{m_{22}^2(T)}{2}\varphi_2^2 + \frac{\lambda_2}{8}\varphi_2^4 + \frac{\lambda_{H11}}{4}h_0^2\omega_3^2 + \frac{\lambda_{H22}}{4}h_0^2\varphi_2^2 + \frac{\lambda_3}{4}\omega_3^2\varphi_2^2.$$

$$m_{H}^{2}(T) = m_{H}^{2} + \frac{T^{2}}{16}(g_{1}^{2} + 3g_{2}^{2} + 2(2\lambda_{H} + \lambda_{H11} + \lambda_{H22} + 2y_{t}^{2})),$$

$$m_{11}^{2}(T) = m_{11}^{2} + \frac{T^{2}}{24}(12\tilde{g}^{2} + 5\lambda_{1} + 3\lambda_{3} + \lambda_{4} + 4\lambda_{H11}),$$

$$m_{22}^{2}(T) = m_{22}^{2} + \frac{T^{2}}{24}(12\tilde{g}^{2} + 5\lambda_{1} + 3\lambda_{3} + \lambda_{4} + 4\lambda_{H22}).$$

GW spectrum

GW sources: $\Omega_{\rm GW} h^2 \simeq \Omega_{\rm sw} h^2 + \Omega_{\rm turb} h^2$

Sound wave

$$\Omega_{\rm sw}h^{2} = 2.65 \times 10^{-6} \left(\frac{H_{*}}{\beta}\right) \left(\frac{\kappa_{v}\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{s}}\right)^{\frac{1}{3}} v_{w} \left(\frac{f}{f_{\rm sw}}\right)^{3} \left[\frac{7}{4+3(f/f_{\rm sw})^{2}}\right]^{\frac{7}{2}} \times \Upsilon(\tau_{\rm sw})$$

$$f_{\rm sw} = 1.9 \times 10^{-2} \text{ mHz} \frac{1}{v_{w}} \left(\frac{\beta}{H_{*}}\right) \left(\frac{T_{*}}{100 \text{ GeV}}\right) \left(\frac{g_{s}}{100}\right)^{\frac{1}{6}} \quad \Upsilon = 1 - \frac{1}{\sqrt{1+2\tau_{\rm sw}H_{*}}}$$

[arXiv: 2007.08537]

[arXiv: 1512.06239]

Turbulence

$$\Omega_{\rm turb}h^2 = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\rm turb}\alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_s}\right)^{\frac{1}{3}} v_w \frac{(f/f_{\rm turb})^3}{[1+(f/f_{\rm turb})]^{\frac{11}{3}}(1+8\pi f/H_0)}$$
$$f_{\rm turb} = 2.7 \times 10^{-2} \text{ mHz} \frac{1}{v_w} \left(\frac{\beta}{H_*}\right) \left(\frac{T_*}{100 \text{ GeV}}\right) \left(\frac{g_s}{100}\right)^{\frac{1}{6}}$$

[arXiv: 1512.06239]