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Metastability of Electroweak Vacuum

e Current measurements of SM parameters
suggest the Higgs self-coupling A, (1) runs
negative at energy scales ;1 > 1010 GeV
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e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs
negative at energy scales ;1 > 1010 GeV
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e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs
negative at energy scales ;1 > 1010 GeV o1
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i.e., electroweak vacuum is metastable.
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Metastability of Electroweak Vacuum

e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs

[arXiv:1809.06923]

negative at energy scales i > 100 GeV 01
1 0.08
V(h) D) 1)\11’(/1,)}14 §oos

0.02

i.e., electroweak vacuum is metastable.

V(h)

UNIVERSITY 2

RIELEEE  Jeff Kost Massless Preheating and Electroweak Vacuum Metastability




Metastability of Electroweak Vacuum

e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs
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Metastability of Electroweak Vacuum

e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs

negative at energy scales ;1 > 1010 GeV
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e Timescale for vacuum decay today is
much longer than age of the universe,
BUT dynamics earlier in cosmological
history would have posed significant
threat to destabilization.




Metastability of Electroweak Vacuum

e Current measurements of SM parameters .
suggest the Higgs self-coupling A, (1) runs

negative at energy scales ;1 > 1010 GeV

1
V(h) D Z)\h(u)h4

i.e., electroweak vacuum is metastable.

V(h)

[arXiv:1809.06923]

)

004 R . .
10° 10" 10"
11/Ge

e Timescale for vacuum decay today is
much longer than age of the universe,
BUT dynamics earlier in cosmological
history would have posed significant
threat to destabilization.

The fact that false vacuum has persisted
may provide window into early-universe
dynamics involving the Higgs field.
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation
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Threats to Metastability in the Early Universe

During inflation:
e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation I

e Minimal such extensions involve scalar curvature R and/or inflaton ¢:

1 1
LD — 55hh2R - §g2h2¢2
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation I

e Minimal such extensions involve scalar curvature R and/or inflaton ¢:
1 1
LD — ifhh2R - §g2h2¢2

HOWEVER, after inflation:

e These interactions tend to destabilize the Higgs after inflation due to
non-perturbative preheating dynamics, recreating our metastability problem
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation I

e Minimal such extensions involve scalar curvature R and/or inflaton ¢:
1 1
LD — ifhh2R - §g2h2¢2

HOWEVER, after inflation:

e These interactions tend to destabilize the Higgs after inflation due to
non-perturbative preheating dynamics, recreating our metastability problem

V(o) Specifically, ¢ gives Higgs fluctuations hy
time-dependent, oscillatory effective masses:

k?
Wh, = P +*¢* + &R
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation I

e Minimal such extensions involve scalar curvature R and/or inflaton ¢:
1 1
LD — ifhh2R - §g2h2¢2

HOWEVER, after inflation:

e These interactions tend to destabilize the Higgs after inflation due to
non-perturbative preheating dynamics, recreating our metastability problem

V(o) Specifically, ¢ gives Higgs fluctuations hy
time-dependent, oscillatory effective masses:

2 _ k? 2,2 R tachyonic
Wh, = 3 IO [Hen instability
parametric| L

® resonance
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Threats to Metastability in the Early Universe

During inflation:

e Light scalar fields generically develop fluctuations proportional to Hubble
scale H. For the Higgs, this could trigger decay of the vacuum.

= need interactions that stabilize Higgs during inflation I

e Minimal such extensions involve scalar curvature R and/or inflaton ¢:
1 1
LD — ifhh2R - §g2h2¢2

HOWEVER, after inflation:

e These interactions tend to destabilize the Higgs after inflation due to
non-perturbative preheating dynamics, recreating our metastability problem

V(o) Specifically, ¢ gives Higgs fluctuations hy
time-dependent, oscillatory effective masses:

2 _ k? 2,2 R tachyonic
Wh, = 3 IO [Hen instability

parametric T b

® resonance

us = leads to amplification of fluctuations hy |
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.

= models usually viable for some range of couplings
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.

= models usually viable for some range of couplings

important exception: models which exhibit scale invariance,
since dynamical properties are independent of expansion.

i.e., models of “massless preheating”
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.

= models usually viable for some range of couplings

important exception: models which exhibit scale invariance,
since dynamical properties are independent of expansion.

i.e., models of “massless preheating”

Under minimal assumptions, this corresponds to (Jordan-frame) potential

1 1 1
Vi(é,h) = Jred" + 59°h70% + 2k
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.

= models usually viable for some range of couplings

important exception: models which exhibit scale invariance,
since dynamical properties are independent of expansion.

i.e., models of “massless preheating”

Under minimal assumptions, this corresponds to (Jordan-frame) potential

1 1 1
Vi(é,h) = |7 he" [+ 5970707 + Ak

= background inflaton evolution:

d?p
— +Xp® = 0
d772 T App
for conformal time 7 and ¢ = a¢

ol )

with rescaled time = = /A\son.
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In most preheating scenarios, the growth of fluctuations weakens and
eventually terminates as the universe expands.

= models usually viable for some range of couplings

important exception: models which exhibit scale invariance,
since dynamical properties are independent of expansion.

i.e., models of “massless preheating”

Under minimal assumptions, this corresponds to (Jordan-frame) potential

1 1 1
Vi(é,h) = |7 he" [+ 5970707 + Ak

= background inflaton evolution:

Similarly, Higgs fluctuations grow

2
d“p N = steadily and uninterrupted—appears
3 T Asp 0 . .
dn catastrophic for EW metastability.
for conformal time 7 and ¢ = a¢

i 1 on closer inspection,
pE)i= 90011(:” — %o, \/§> | is there a regime of viability
for massless preheating?

with rescaled time = = /A\son.
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Comments On Inflationary Regime

e Our preheating study is relatively independent of the inflationary model.
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Comments On Inflationary Regime

e QOur preheating study is relatively independent of the inflationary model.

e Nevertheless, a viable inflationary regime is realized by allowing a
non-minimal coupling for the inflaton
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Comments On Inflationary Regime

e QOur preheating study is relatively independent of the inflationary model.

e Nevertheless, a viable inflationary regime is realized by allowing a
non-minimal coupling for the inflaton
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Comments On Inflationary Regime

e QOur preheating study is relatively independent of the inflationary model.

e Nevertheless, a viable inflationary regime is realized by allowing a
non-minimal coupling for the inflaton

1 T

o

-1 2 pe]

£2 -tk .}

2| |

e For generality, we also consider z§ i !
both the metric (0 = 1) and Palatini 3 2|} !
formulations (0 = 0) of gravity. =1 |
i \‘ ’l
\ 1

e Overall, we have the (Einstein-frame) .

potential in the inflationary regime B Y 1

)
o ((g) _ s tanh4(\/—§ ng) for =0 ¢
" 465 | (1 e VEY for 0=1

where 5 is the canonical inflaton field.
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

) E=En+ & —608nEs — 3

w%_lk = k24 g% (1 + §¢i—2> +&a’R
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are
falls as 1/a?
— I E=En+ & —608nEs — 3
@
wy, = K+ 92<p2(1 +&os ) +Ea’R

falls as 1/a?
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

falls as 1/a?

_ 1
— I §=&n+8p —608n8y — 5
2 2 2 2 ¥ 2
wy, = K 497 (1+£¢7) +8a"R
[ a —
no dissipation falls as 1/a?
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

falls as 1/a?

— £ =&+ & —606Ey — §
wh, = B+ (1465 ) + &R
| I | a | M|
no dissipation falls as 1/a?

= In general, Higgs has two dynamical phases of evolution:
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

falls as 1/a?

— £ =&+ & —606Ey — §
wh, = B+ (1465 ) + &R
| I | a | M|
no dissipation falls as 1/a?

= In general, Higgs has two dynamical phases of evolution:

@ tachyonic production driven by curvature interactions
[relatively short lived since terms dissipate as 1/a]

3 /39/4 /g\%/2 4/ 2
mo= (Vo) (522) (L) mresvee

o (and £ > 0)
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

falls as 1/a?

— £ =&+ & —606Ey — §
wh, = B+ (1465 ) + &R
| I | a | M|
no dissipation falls as 1/a?

= In general, Higgs has two dynamical phases of evolution:

tachyonic production driven by curvature interactions
[relatively short lived since terms dissipate as 1/a]

/4 /EN? 1 NV 55
w=5(vd) () (5)" masve

8 2z To (and £ > 0)

@ parametric resonance driven by quartic interaction
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Production of Higgs Particles

e The effective masses of Higgs fluctuations (in Einstein frame) are

falls as 1/a?

T 2| \L £E§h+£¢760£h€¢7%
wh, = B+ (1465 ) + &R
| I | a | M|
no dissipation falls as 1/a?

= In general, Higgs has two dynamical phases of evolution:

tachyonic production driven by curvature interactions
[relatively short lived since terms dissipate as 1/a]

/4 /EN? 1 NV 55
w=5(vd) () (5)" masve

8 2z To (and £ > 0)

@ parametric resonance driven by quartic interaction
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Higgs modes grow as nj, o e2#+®
[for parametric resonance]

Hmax

MOIIRU
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Two important effects neglected thus far:

@ perturbative decays of produced Higgs particles

@ backreaction of particle production on the system
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(1) Perturbative Higgs Decays R0
1 =
e A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative 0
decays to SM particles. . . . . . .
12 F[broad resonance (k=0)
9%/ As=2n> =288
o &
S s
S 6 - :K\\O\, o
ED <

4 |-|narrow resonance (x#0)
9%/ Xe=2n+n=300

logy 1on,,

" Tema 10 20 30 40 50 60 70
T = /AN
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@ Perturbative Higgs Decays

e A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative

. 0
decays to SM particles.
1 1 1 1 1 1
. o 12 F[broad resonance (k=0)
e The dominant decay channel is into top 9%/ Ay =2n2 =288
quarks with the (rest-frame) decay rate o
) h= o)
2 S F—g,=0 &
Fh _ 3yt mp :9 6 &n :K\\o\\’\ m
167 g i
. 3 -
and effective mass my, = 1/ g2¢? + £R.
ok
1 1 1 1 1 1
4 |-|narrow resonance (x#0)
9%/ Xe=2n+n=300
3
<
£ o
&0
2 1F
ok

" Tema 10 20 30 40 50 60 70

T = /AN
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@ Perturbative Higgs Decays

e A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative

. 0
decays to SM particles. . . . . . .
. o 12 F[broad resonance (k=0)
e The dominant decay channel is into top 9%/ Xy =2n> =288
quarks with the (rest-frame) decay rate 9t
3yrma g
Fh = 3
167w g
and effective mass my, = 1/ g2¢? + £R. 3

e As (R — 0, the effect on the Higgs
phase-space density np, is to dissipate it as 4}

narrow resonance (xk7#0)
9%/ Xe=2n+n=300
% 3 -—g 50

h=
~ —0.036y2, | Lz
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log np,, o«
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@ Perturbative Higgs Decays

e A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative
decays to SM particles.

[ |broad resonance (k=0)

e The dominant decay channel is into top 9%/ Xy =2n> =288

quarks with the (rest-frame) decay rate 9t
3yimn g
Iy, = S
4 167 K

and effective mass my, = 1/ g2¢? + £R. 3

e As (R — 0, the effect on the Higgs
phase-space density np, is to dissipate it as 4}

narrow resonance (k7#0)
9%/ Xe=2n+n=300

2 ] [S— —— s
log o™ [ dz Lt = 00362 N = - A
A / sO )\@ i 2F ) N
o <«
The decay exponent depends linearly on =
time, same as growth exponents 2. oH
= decays could entirely suppress

production of Higgs particles. Tdena 10 20 30 40 50 60 70

us does not occur in massive preheating
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(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3Ho + \s® + (3Ag(0%) +9°(h*))¢ = 0
backreaction on inflaton
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(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3Ho + \s® + (3Ag(0%) +9°(h*))¢ = 0
backreaction on inflaton

= backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

us 10

UNIVERSITY
OF SUSSEX IEIITIGES Massless Preheating and Electroweak Vacuum Metastability




(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3Ho + \s® + (3Ag(0%) +9°(h*))¢ = 0
backreaction on inflaton

= backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to (¢?), ending linear stage at xny, &~ 405 (with A, = 10710).
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(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3HG + As¢® + (3Ms(0%) + g% (h%))6 = 0
backreaction on inflaton

= backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to (¢?), ending linear stage at xny, &~ 405 (with A, = 10710).

e Also modifies the effective masses of the Higgs fluctuations

k2
Wh, = 3 +6°07 R +g%(6%) + 3N (h?)
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(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3HG + As¢® + (3Ms(0%) + g% (h%))6 = 0
backreaction on inflaton

= backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to (¢?), ending linear stage at xny, &~ 405 (with A, = 10710).

e Also modifies the effective masses of the Higgs fluctuations

k2 .
Wi, = =t 9*¢° + EnR + g% (%) + 3/\;,,<hz>l

source of destabilization
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(2) Backreaction

e Although fluctuations grow unimpeded, eventually their energy density

will be comprable to inflaton background ) )
variance of fluctuations

¢+ 3HG + As¢® + (3Ms(0%) + g% (h%))6 = 0
backreaction on inflaton

= backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to (¢?), ending linear stage at xny, &~ 405 (with A, = 10710).

e Also modifies the effective masses of the Higgs fluctuations

k2 .
Wi, = =¥ 9** + &R+ g% (9?) + 3A,,,<hz>I
source of destabilization

= tachyonic contriubtion (3\;(h?) < 0) can destabilize Higgs prior to v
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Higgs/inﬂaton [broad resonance: g%/ Ay =288 £:30]
0
fluctuations
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evolution of ., TWT
HiggS/inﬂaton [broad relsonance: gz/)\;:288 £:3O]I
fluctuations

107 E

102
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evolution of

x,

end

= /Ason
10 20 30

Higgs/inflaton

[broad resonance: gz/)\¢ =288 (= 30]

fluctuations

—lel

vacuum barrier

(H?)
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perturbative decays
extend lifetime

«

— inflaton fluctuations

terminate linear stage
of preheating

z =/ AsP1
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perturbative decays
ensure viability
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Summary of Results 900 1400 2000

Calculate vacuum decay time Zgec 200 g T
i |
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TAKE-HOME MESSAGE:

e Although models that lead to massless preheating appear catastrophic for
electroweak vacuum metastability, fully accounting for backreaction and
perturbative decays reveals a large number of disjoint (meta)stable regions.

e In contrast to other (massive) preheating scenarios, the Higgs-inflaton
coupling is ultimately bounded from below to ensure viability.
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FUTURE WORK/DIRECTIONS:

e Inclusion of terms in inflaton potential, e.g., small mass terms, that break
scale invariance—new phases of evolution would be considered.

e The effect of spectator fields on the dynamics and non-linear onset znr..
e Extensions to multi-inflaton models with significant angular velocity

e Further extension of gravity formulation, e.g., to Einstein-Cartan gravity.
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