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• Timescale for vacuum decay today is
much longer than age of the universe,
BUT dynamics earlier in cosmological
history would have posed significant
threat to destabilization.
The fact that false vacuum has persisted
may provide window into early-universe
dynamics involving the Higgs field.
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• These interactions tend to destabilize the Higgs after inflation due to
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Specifically, ϕ gives Higgs fluctuations hk
time-dependent, oscillatory effective masses:

ω2
hk

= k2

a2 + g2ϕ2 + ξhR

parametric
resonance

tachyonic
instability

⇒ leads to amplification of fluctuations hk
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4

λhh4

⇒ background inflaton evolution:
d2φ

dη2 + λϕφ3 = 0

for conformal time η and φ ≡ aϕ

φ(x) = φ cn
(

x − x0,
1√
2

)
,

with rescaled time x ≡
√

λϕφη.

Similarly, Higgs fluctuations grow
steadily and uninterrupted—appears
catastrophic for EW metastability.

on closer inspection,
is there a regime of viability
for massless preheating?
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• Our preheating study is relatively independent of the inflationary model.

• Nevertheless, a viable inflationary regime is realized by allowing a
non-minimal coupling for the inflaton

L ⊃ − 1
2 ξϕϕ2R.

• For generality, we also consider
both the metric (θ = 1) and Palatini
formulations (θ = 0) of gravity.

• Overall, we have the (Einstein-frame)
potential in the inflationary regime

VE(ϕ̃) = λϕ

4ξ2
ϕ

{
tanh4(√−ξϕϕ̃

)
for θ = 0(

1 − e−
√

2
3 ϕ̃
)2 for θ = 1

where ϕ̃ is the canonical inflaton field.
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Higgs modes grow as nhk
∝ e2µkx

[for parametric resonance]
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Two important effects neglected thus far:
1 perturbative decays of produced Higgs particles
2 backreaction of particle production on the system



1 Perturbative Higgs Decays

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
9

• A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative
decays to SM particles. 0

1
ϕ2 a2R/(λφϕ

2)

0

3

6

9

12

lo
g

1
0
n
h

0

with
out deca

ys

with
decays

ξh=50
ξh=0

broad resonance (κ=0)

g2/λφ=2n2 =288

xend 10 20 30 40 50 60 70

x ≡√λφϕη
−1

0

1

2

3

4

lo
g

1
0
n
h
k

with
out deca

ys

with decays

ξh=50
ξh=0

narrow resonance (κ 6=0)

g2/λφ=2n2+n=300



1 Perturbative Higgs Decays

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
9

• A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative
decays to SM particles.

• The dominant decay channel is into top
quarks with the (rest-frame) decay rate

Γh = 3y2
t mh

16π

and effective mass mh ≡
√

g2ϕ2 + ξR.

0

1
ϕ2 a2R/(λφϕ

2)

0

3

6

9

12

lo
g

1
0
n
h

0

with
out deca

ys

with
decays

ξh=50
ξh=0

broad resonance (κ=0)

g2/λφ=2n2 =288

xend 10 20 30 40 50 60 70

x ≡√λφϕη
−1

0

1

2

3

4

lo
g

1
0
n
h
k

with
out deca

ys

with decays

ξh=50
ξh=0

narrow resonance (κ 6=0)

g2/λφ=2n2+n=300



1 Perturbative Higgs Decays

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
9

• A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative
decays to SM particles.

• The dominant decay channel is into top
quarks with the (rest-frame) decay rate

Γh = 3y2
t mh

16π

and effective mass mh ≡
√

g2ϕ2 + ξR.

• As ξR → 0, the effect on the Higgs
phase-space density nhk

is to dissipate it as

log nhk
∝ −

∫
dx

aΓh√
λϕφ

≈ −0.036y2
t

√
g2

λϕ
x

0

1
ϕ2 a2R/(λφϕ

2)

0

3

6

9

12

lo
g

1
0
n
h

0

with
out deca

ys

with
decays

ξh=50
ξh=0

ξh=50
ξh=0

broad resonance (κ=0)

g2/λφ=2n2 =288

xend 10 20 30 40 50 60 70

x ≡√λφϕη
−1

0

1

2

3

4

lo
g

1
0
n
h
k

with
out deca

ys

with decays

ξh=50
ξh=0 ξh=50

ξh=0

narrow resonance (κ 6=0)

g2/λφ=2n2+n=300



1 Perturbative Higgs Decays

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
9

• A crucial effect we have ignored thus far
is that the Higgs undergoes perturbative
decays to SM particles.

• The dominant decay channel is into top
quarks with the (rest-frame) decay rate

Γh = 3y2
t mh

16π

and effective mass mh ≡
√

g2ϕ2 + ξR.

• As ξR → 0, the effect on the Higgs
phase-space density nhk

is to dissipate it as

log nhk
∝ −

∫
dx

aΓh√
λϕφ

≈ −0.036y2
t

√
g2

λϕ
x

The decay exponent depends linearly on
time, same as growth exponents 2µkx.
⇒ decays could entirely suppress
production of Higgs particles.

does not occur in massive preheating

0

1
ϕ2 a2R/(λφϕ

2)

0

3

6

9

12

lo
g

1
0
n
h

0

with
out deca

ys

with
decays

ξh=50
ξh=0

ξh=50
ξh=0

broad resonance (κ=0)

g2/λφ=2n2 =288

xend 10 20 30 40 50 60 70

x ≡√λφϕη
−1

0

1

2

3

4

lo
g

1
0
n
h
k

with
out deca

ys

with decays

ξh=50
ξh=0 ξh=50

ξh=0

narrow resonance (κ 6=0)

g2/λφ=2n2+n=300



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations

⇒ backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations

⇒ backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to ⟨ϕ2⟩, ending linear stage at xNL ≈ 405 (with λϕ = 10−10).



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations

⇒ backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to ⟨ϕ2⟩, ending linear stage at xNL ≈ 405 (with λϕ = 10−10).

• Also modifies the effective masses of the Higgs fluctuations

ω2
hk

= k2

a2 + g2ϕ2 + ξhR + g2⟨ϕ2⟩ + 3λh⟨h2⟩
source of destabilization



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations

⇒ backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to ⟨ϕ2⟩, ending linear stage at xNL ≈ 405 (with λϕ = 10−10).

• Also modifies the effective masses of the Higgs fluctuations

ω2
hk

= k2

a2 + g2ϕ2 + ξhR + g2⟨ϕ2⟩ + 3λh⟨h2⟩
source of destabilization



2 Backreaction

Jeff Kost Massless Preheating and Electroweak Vacuum Metastability
10

• Although fluctuations grow unimpeded, eventually their energy density
will be comprable to inflaton background

ϕ̈ + 3Hϕ̇ + λϕϕ3 +
(
3λϕ⟨ϕ2⟩ + g2⟨h2⟩

)
backreaction on inflaton

ϕ = 0

variance of fluctuations

⇒ backreaction terminates (linear stage of) preheating,
ending the dangerous particle production processes

Ultimately due to ⟨ϕ2⟩, ending linear stage at xNL ≈ 405 (with λϕ = 10−10).

• Also modifies the effective masses of the Higgs fluctuations

ω2
hk

= k2

a2 + g2ϕ2 + ξhR + g2⟨ϕ2⟩ + 3λh⟨h2⟩
source of destabilization

⇒ tachyonic contriubtion (3λh⟨h2⟩ < 0) can destabilize Higgs prior to xNL.
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SOME OBSERVATIONS:
• large number of disjoint
metastable regions distributed
throughout parameter space

• due to perturbative decays, a
contiguous metastable region
emerges at g2/λϕ ≳ 2 × 103

• curvature coupling imposes
envelope over metastable regions
at ξ ≲ g2/λϕ—i.e., large ξ viable
as long as g2/λϕ is similarly large.
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TAKE-HOME MESSAGE:
• Although models that lead to massless preheating appear catastrophic for
electroweak vacuum metastability, fully accounting for backreaction and
perturbative decays reveals a large number of disjoint (meta)stable regions.
• In contrast to other (massive) preheating scenarios, the Higgs-inflaton
coupling is ultimately bounded from below to ensure viability.
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FUTURE WORK/DIRECTIONS:

• Inclusion of terms in inflaton potential, e.g., small mass terms, that break
scale invariance—new phases of evolution would be considered.

• The effect of spectator fields on the dynamics and non-linear onset xNL.

• Extensions to multi-inflaton models with significant angular velocity

• Further extension of gravity formulation, e.g., to Einstein-Cartan gravity.
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