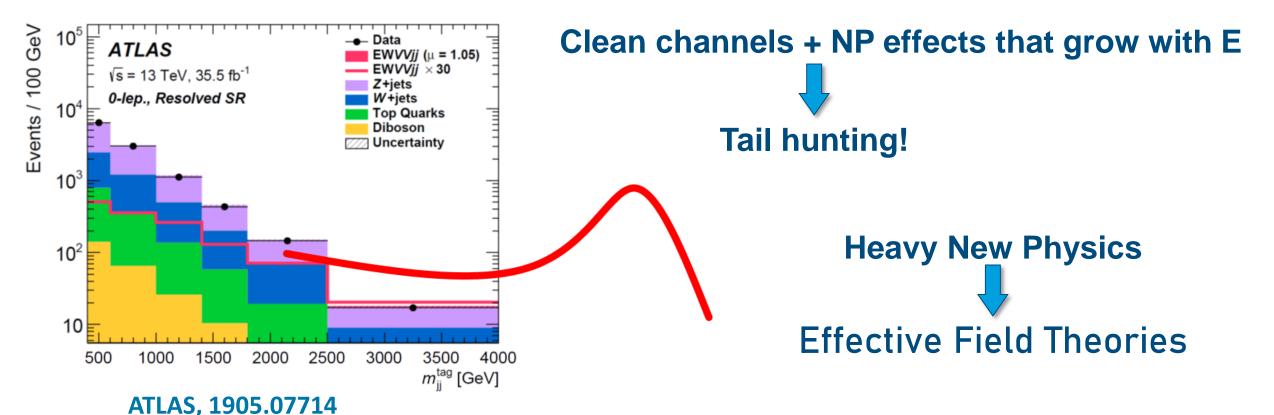
Unveiling the Higgs at FCC-hh

With new diboson precision measurements

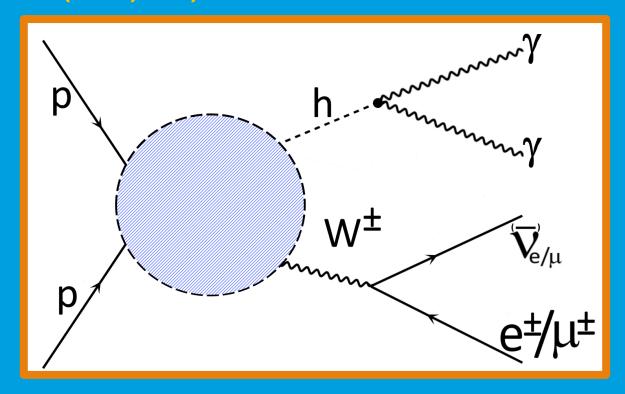
Pheno 2021 26 May 2021

Alejo N. Rossia


DESY Hamburg Theory Group Institut für Physik, Humboldt-Universität zu Berlin

In collaboration with F. Bishara, P. Englert, C. Grojean, M. Montull, G. Panico arXiv 2004.06122 (JHEP 07 (2020) 075) arXiv 2011.13941 (JHEP 04 (2021) 154) (+ S. De Curtis, L. Delle Rose)

Motivation


- We need Physics Beyond the Standard Model
- Precision with hadron colliders? Yes!

Diboson processes are useful

Leptonic diphoton Wh.

arXiv 2004.06122 (JHEP 07 (2020) 075)

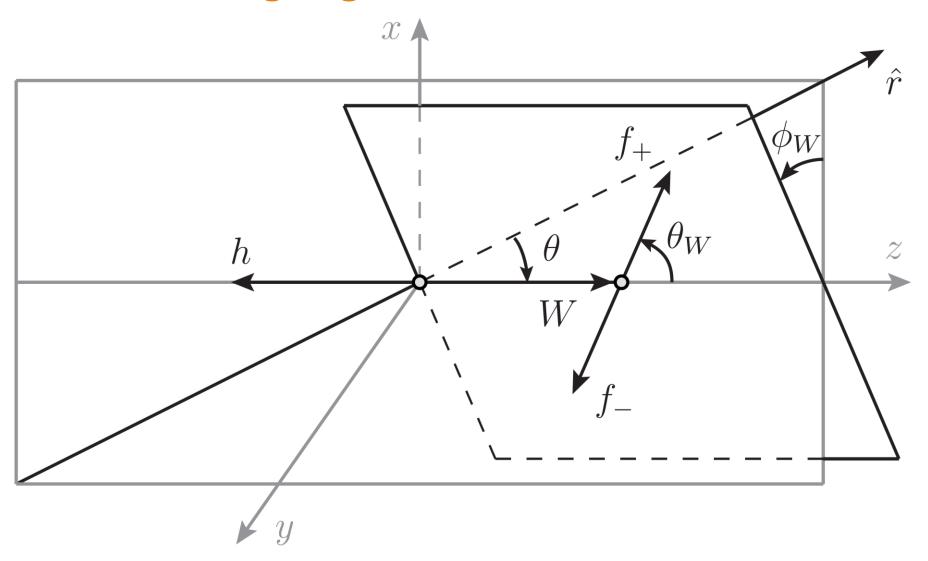
$$pp \to W^{\pm}h \to l^{\pm}\nu\gamma\gamma$$

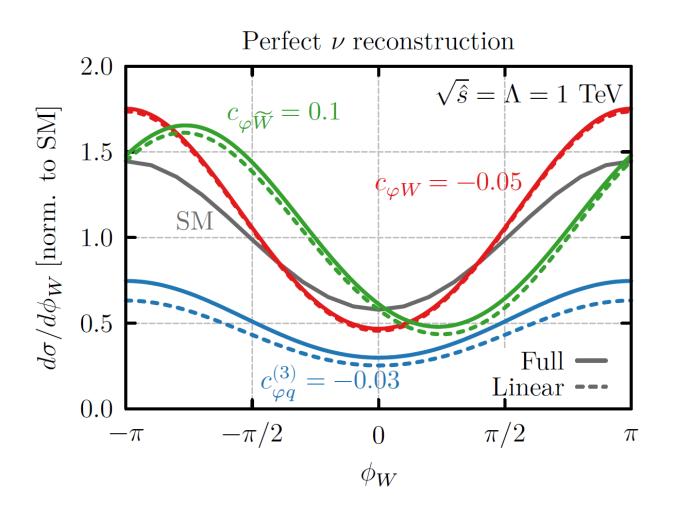
What New Physics can we probe?

Assumptions: SMEFT + Dim. 6 op. in Warsaw basis + MFV.

High energy behavior

$$\frac{c_{\varphi q}^{(3)}}{\Lambda^{2}} \left(\overline{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right) \longrightarrow \frac{\mathcal{A}_{BSM}}{\mathcal{A}_{SM}} \sim \hat{s}$$


$$\frac{c_{\varphi W}}{\Lambda^{2}} H^{\dagger} H W^{a,\mu\nu} W_{\mu\nu}^{a}$$

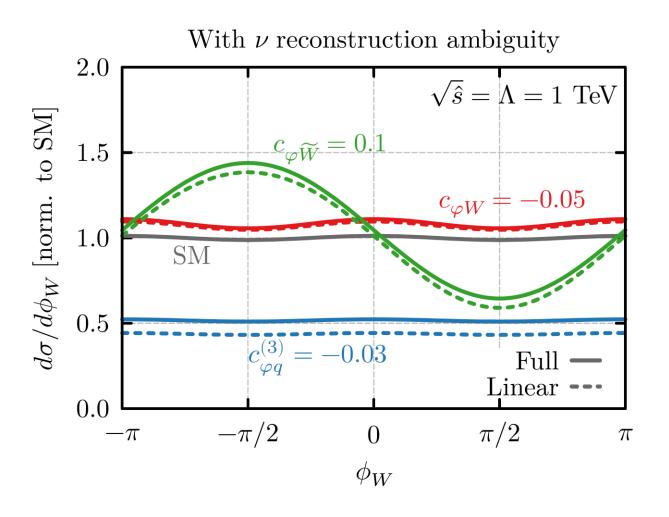

$$\frac{c_{\varphi \widetilde{W}}}{\Lambda^{2}} H^{\dagger} H W^{a,\mu\nu} \widetilde{W}_{\mu\nu}^{a}$$

$$\frac{\mathcal{A}_{BSM}}{\mathcal{A}_{SM}} \sim \sqrt{\hat{s}}$$

$$\widetilde{W}^{a,\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} W^a_{\rho\sigma}$$

Measuring angles resurrects interference

Differential in p_T^h and ϕ_W

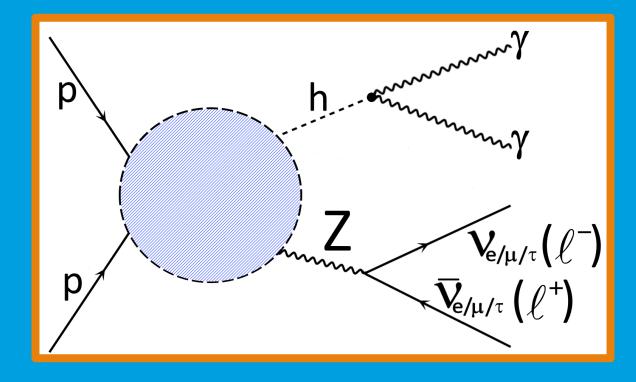

$$\sigma_{\mathcal{O}_{\varphi q}^{(3)}}^{int} \sim \frac{\hat{s}}{\Lambda^{2}}$$

$$\sigma_{\mathcal{O}_{\varphi W}}^{int} \sim \frac{\sqrt{\hat{s}} M_{W}}{\Lambda^{2}} \cos(\phi_{W})$$

$$\sigma_{\mathcal{O}_{\varphi \widetilde{W}}}^{int} \sim \frac{\sqrt{\hat{s}} M_{W}}{\Lambda^{2}} \sin(\phi_{W})$$

$$p_T^h \in \{200, 400, 600, 800, 1000, \infty\} \text{ GeV}$$

$$\phi_W \in [-\pi, 0], [0, \pi]$$


Differential in p_T^h and ϕ_W

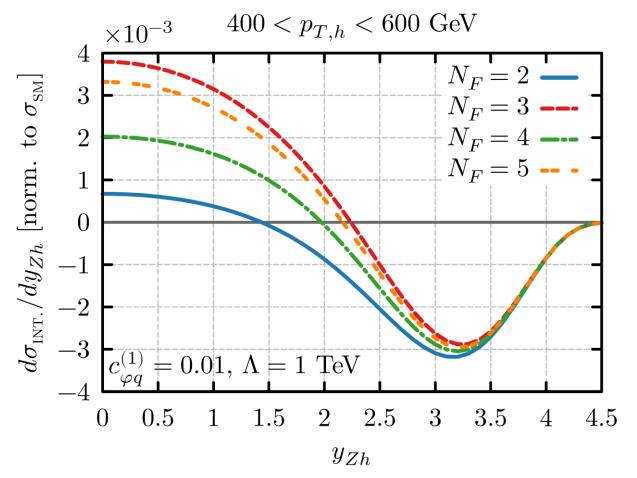
$$p_T^h \in \{200, 400, 600, 800, 1000, \infty\} \text{ GeV}$$

$$\phi_W \in [-\pi, 0], [0, \pi]$$

Diphoton Zh.

arXiv 2011.13941 (JHEP 04 (2021) 154)

$$pp \to Zh \to l^+l^- (\nu\bar{\nu})\gamma\gamma$$


What New Physics can we probe?

Assumptions: SMEFT + Dim. 6 op. in Warsaw basis + Flav. Univ.

$$\frac{c_{\varphi q}^{(3)}}{\Lambda^{2}} \left(\overline{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \sigma^{a} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi q}^{(1)}}{\Lambda^{2}} \left(\overline{Q}_{L} \gamma^{\mu} Q_{L} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi u}}{\Lambda^{2}} \left(\overline{u}_{R} \gamma^{\mu} u_{R} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)
\frac{c_{\varphi d}}{\Lambda^{2}} \left(\overline{d}_{R} \gamma^{\mu} d_{R} \right) \left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)$$

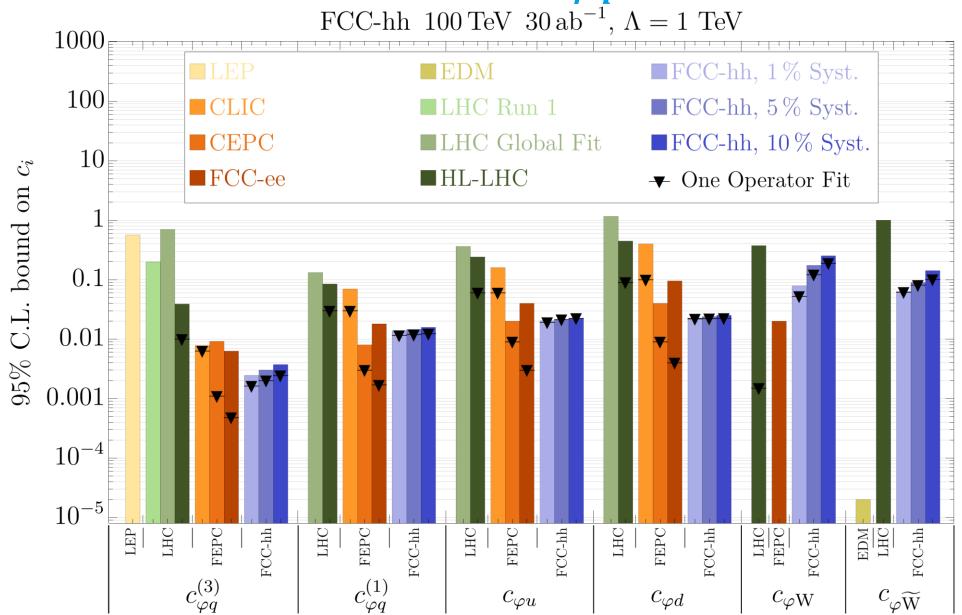
High energy behavior

$$rac{{\cal A}_{BSM}}{{\cal A}_{SM}}\sim \hat{s}$$

$$\sigma^{int}_{\mathcal{O}^{(1)}_{\varphi q}} \propto s_W^2 Q - T_3$$

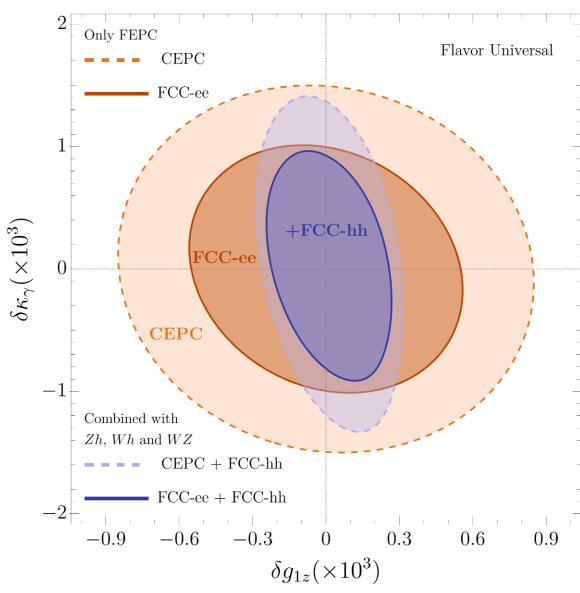
Cancellation of up and down contributions

$$\sigma^{int}_{\mathcal{O}_{\varphi u(d)}} \propto g^{Zu(d)}_R$$


Suppression by SM coupling

Differential in p_T and rapidity

$$Min\{p_T^h, p_T^Z\} \in \{200, 400, 600, 800, 1000, \infty\}$$
 GeV


$$|y_{Zh}| \in [0,2), [2,6]$$

Very competitive bounds for $c_{\varphi q}^{(3)}$ (Zh + Wh comb.)

Sizeable impact on aTGC bounds

FCC-hh $100 \,\text{TeV} \, 30 \,\text{ab}^{-1}, \, 95\% \, \text{C.L.}, \, 5\% \, \text{Syst.}$

Conclusions

- New diboson channels to do precision measurements at FCC-hh, like Wh and Zh with $h \rightarrow \gamma\gamma$.
- With a simple p_T binning, they offer competitive sensitivity to $\mathcal{O}_{\varphi q}^{(3)}$.
- In Wh, a binning in ϕ_W gives an observable linear in $\mathcal{O}_{\phi\widetilde{W}}$ with competitive sensitivity.
- In Zh, a binning in rapidity helps to overcome cancellations between different flavor contributions in $\mathcal{O}_{\varphi q}^{(1)}$.
- Wh and Zh with $h o \gamma\gamma$ are not exploration channels, but important to probe different directions.

Thank you for your attention

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

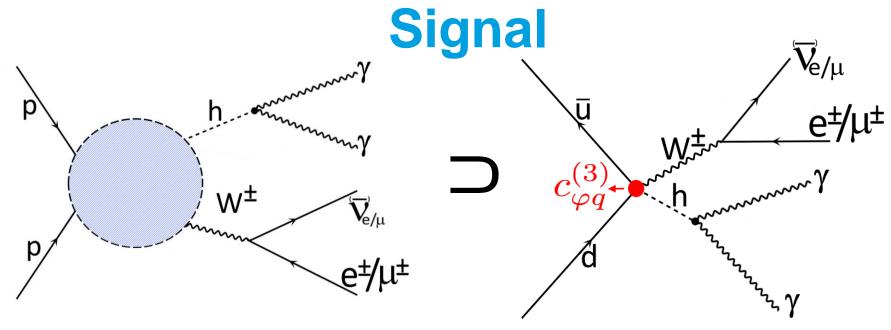
Alejo N. Rossia

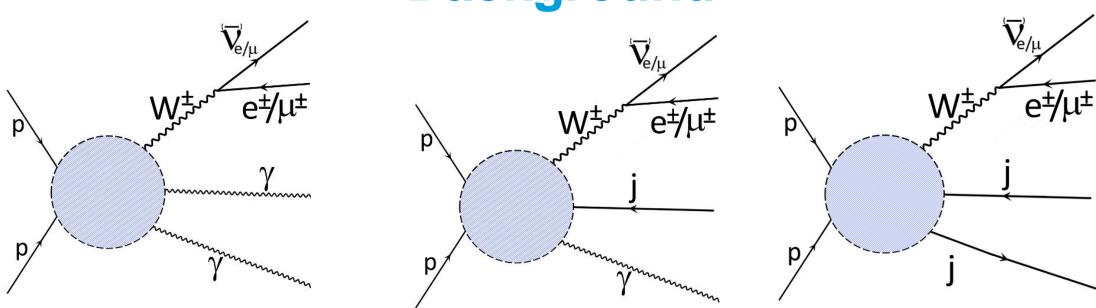
DESY Theory Group

E-mail: alejo.rossia at desy dot de

https://theory-hamburg.desy.de/

Appendix.


For even more details, read our papers.


Helicity amplitudes: High energy behavior

W polarization	SM	$\mathcal{O}_{arphi q}^{(3)}$	$\mathcal{O}_{arphi ext{W}}$	$\mathcal{O}_{arphi \widetilde{\mathrm{W}}}$
$\lambda = 0$	1	$rac{\hat{s}}{\Lambda^2}$	$rac{M_W^2}{\Lambda^2}$	0
$\lambda = \pm$	$\frac{M_W}{\sqrt{\hat{s}}}$	$rac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_W}{\Lambda^2}$	$rac{\sqrt{\hat{s}} M_W}{\Lambda^2}$

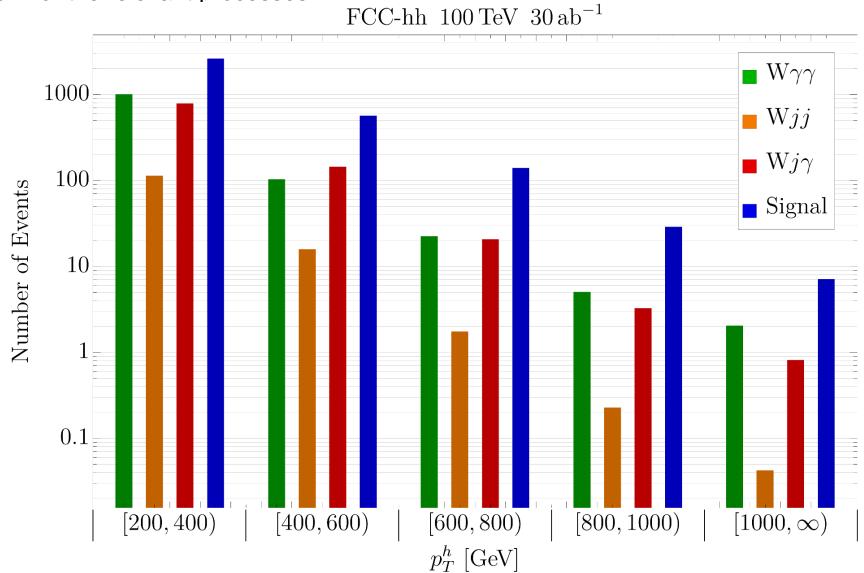
Background

Simulation details

- Montecarlo generation: Madgraph5_aMC@NLO v.2.6.5; showering: Pythia 8.2; detector simulation: Delphes v.3.4.1 with FCC-hh card.
- Signal and $W\gamma\gamma$ simulated at FO, the rest simulated at LO. QED k-factor for the signal.
- Parton level generation cuts:

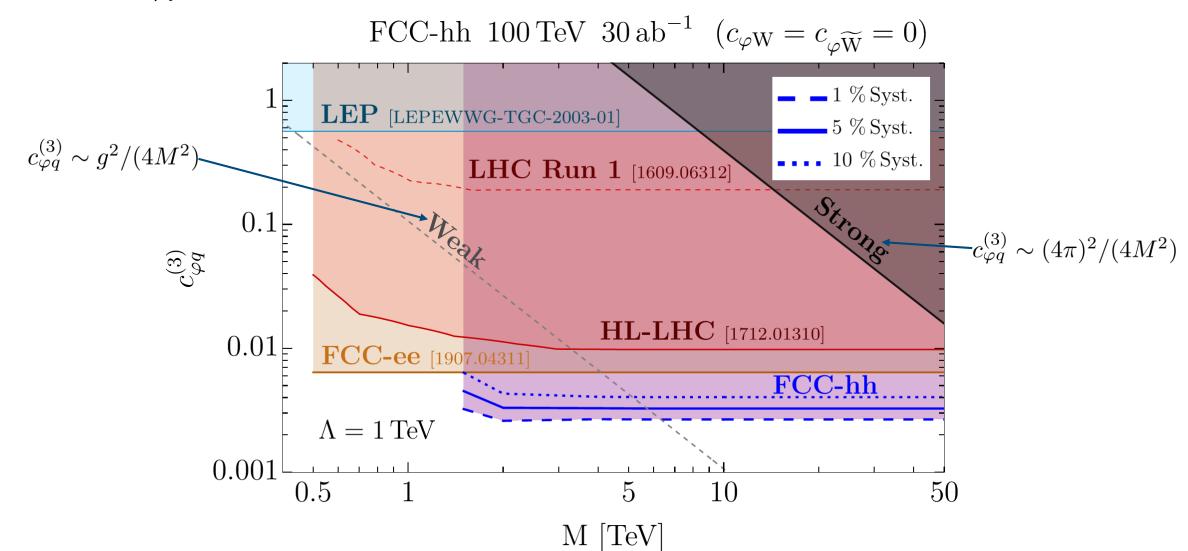
	Wh		$W\gamma\gamma$	$Wj\gamma$ and Wjj
$p_{T,\mathrm{min}}^{\ell}$ [GeV]		30	(all samples)	
$p_{T,\mathrm{min}}^{\gamma,j}$ [GeV]		50	(all samples)	
${E_{T,\min}} \ [\mathrm{GeV}]$		100	(all samples)	
$ \eta_{ ext{max}}^{j,\ell} $		6.1	(all samples)	
$\Delta R_{\min}^{\gamma\gamma,\gamma j,\gamma\ell}$	_		0.01	0.01
$\Delta R_{ m max}^{\gamma\gamma,\gamma j,jj}$	_		2.5	2
$m^{\gamma\gamma,\gamma j,jj}$ [GeV]	_		[50,300]	[50,250]
$p_{T,\mathrm{min}}^{h,\gamma\gamma}$ [GeV]	{150,350,550,750}	{100	,300,500,700}	_
$p_{T,\mathrm{min}}^{\ell\nu}$ [GeV]	_		_	$\{100,\!300,\!500,\!700\}$

Analysis details

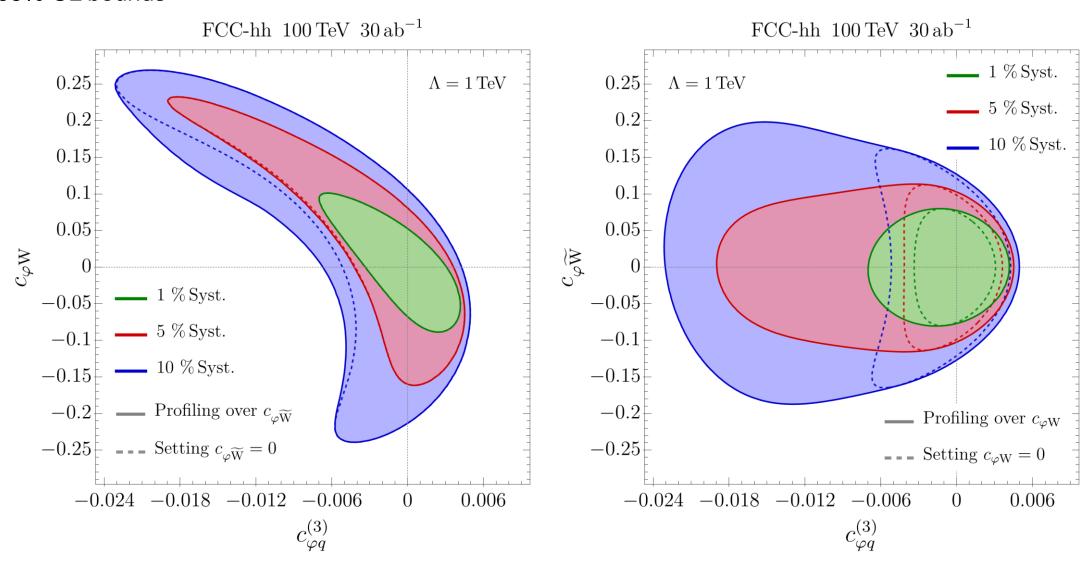

Selection cuts and cutflow in the third p_T^h bin:

	Selection cuts
$p_{T,\mathrm{min}}^{\ell} \; [\mathrm{GeV}]$	30
$p_{T,\mathrm{min}}^{\gamma} \; [\mathrm{GeV}]$	50
$\not\!\!E_{T,\mathrm{min}}\ [\mathrm{GeV}]$	100
$m_{\gamma\gamma} \; [{ m GeV}]$	[120, 130]
$\Delta R_{ m max}^{\gamma\gamma}$	$\{1.3, 0.9, 0.75, 0.6, 0.6\}$
$p_{T,\mathrm{max}}^{Wh} \; [\mathrm{GeV}]$	{300, 500, 700, 900, 900}

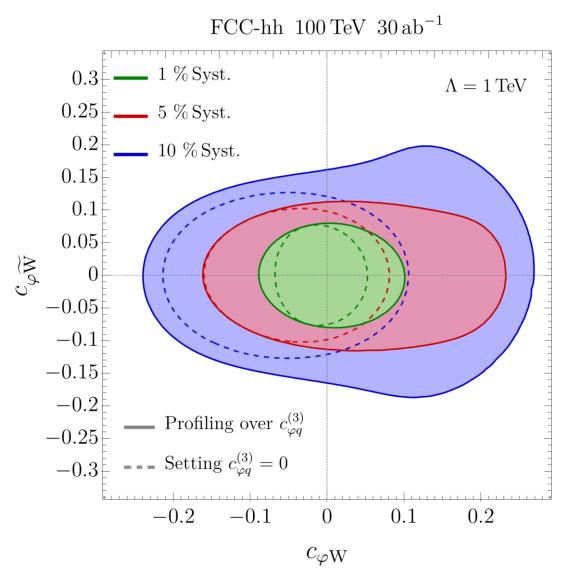
Selection cuts / efficiency	$\xi_{h \to \gamma \gamma}^{(3)}$	$\xi_{\gamma\gamma}^{(3)}$	$\xi_{j\gamma}^{(3)}$	$\xi_{jj}^{(3)}$
$\geq 1\ell^{\pm} \text{ with } p_T > 30 \text{ GeV}$	0.86	0.46	0.94	0.94
$\geq 2\gamma$ each with $p_T > 50$ GeV	0.50	0.18	$5.7 \cdot 10^{-3}$	$8.7 \cdot 10^{-7}$
${E_T}>100{\rm GeV}$	0.49	0.16	$5.1 \cdot 10^{-3}$	$8.5 \cdot 10^{-7}$
$120\mathrm{GeV} < m_{\gamma\gamma} < 130\mathrm{GeV}$	0.46	$6 \cdot 10^{-3}$	$2 \cdot 10^{-4}$	$8.2 \cdot 10^{-8}$
$\Delta R^{\gamma\gamma} < \Delta R_{max}$	0.45	$4 \cdot 10^{-3}$	$3.1 \cdot 10^{-5}$	$6.4 \cdot 10^{-8}$
$p_T^{Wh} < p_{T,max}^{Wh}$	0.41	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-8}$

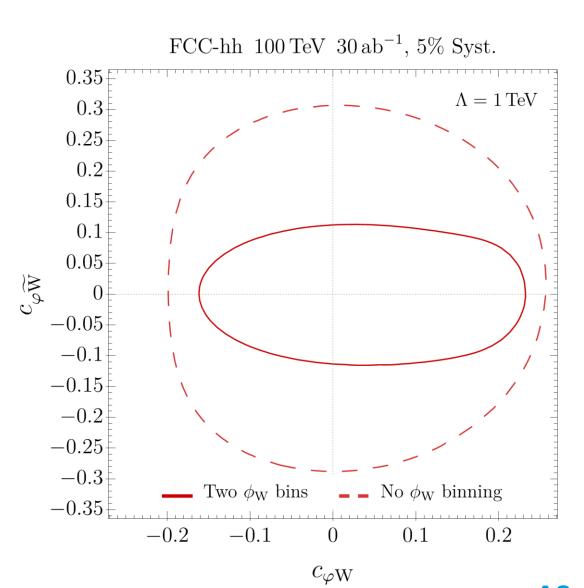


Events per bin for the relevant processes



Bounds on $\mathcal{O}_{\varphi q}^{(3)}$ with one operator fit as a function of the NP scale M. See details in JHEP 07 (2020) 075, Fig. 5




95% CL bounds

95% CL bounds

95% CL bounds summary

Coefficient	Profiled Fit		One Operator Fit	
	$[-5.1, 3.4] \times 10^{-3}$	1% syst.	$[-2.7, 2.5] \times 10^{-3}$	1% syst.
$c_{\varphi q}^{(3)}$	$[-11.6, 3.8] \times 10^{-3}$	5% syst.	$[-3.3, 2.9] \times 10^{-3}$	5% syst.
	$[-20.6, 4.1] \times 10^{-3}$	10% syst.	$[-4.0, 3.5] \times 10^{-3}$	10% syst.
	$[-7.1, 7.9] \times 10^{-2}$	1% syst.	$[-5.3, 4.3] \times 10^{-2}$	1% syst.
$c_{arphi ext{W}}$	$[-13.0, 17.5] \times 10^{-2}$	5% syst.	$[-12.1, 6.8] \times 10^{-2}$	5% syst.
	$[-20.0, 25.2] \times 10^{-2}$	10% syst.	$[-18.8, 9.0] \times 10^{-2}$	10% syst.
	$[-6.4, 6.4] \times 10^{-2}$	1% syst.	$[-6.1, 6.1] \times 10^{-2}$	1% syst.
$c_{arphi \widetilde{\mathrm{W}}}$	$[-9.0, 8.8] \times 10^{-2}$	5% syst.	$[-8.1, 8.1] \times 10^{-2}$	5% syst.
	$[-13.5, 14.2] \times 10^{-2}$	10% syst.	$[-10.1, 10.1] \times 10^{-2}$	10% syst.

• Bound on aTGCs. $c_{\varphi q}^{(3)}$ is related to aTGCs as follows:

$$c_{\varphi q}^{(3)} = \frac{\Lambda^2}{m_W^2} g^2 (\delta g_L^{Zu} - \delta g_L^{Zd} - c_\theta^2 \delta g_{1z})$$

For theories where the vertex corrections are small (e.g. universal theories), the bound on $c_{\varphi q}^{(3)}$ can be recast as a bound on ∂g_{1z} . For 5% systematics and $\Lambda = 1$ TeV:

	One operator Fit	Profiled global fit
$\partial g_{1z} \in$	$[-5.0, 4.4] \times 10^{-5}$	$[-17.6, 5.8] \times 10^{-5}$

Bound from other sources:

	LEP	Current LHC	WZ@HL-LHC	FCC-ee
	([1902.00134])	([1810.05149])	([1712.01310])	([1907.04311])
$\partial g_{1z} \in$	$[-1.3, 1.8] \times 10^{-1}$	$[-19, 1] \times 10^{-3}$	$[-1,1] \times 10^{-3}$	$[-5,5] \times 10^{-4}$

Helicity amplitudes: High energy behavior

Z polarization	SM	$\mathcal{O}_{arphi q}^{(3)}$	$\mathcal{O}_{arphi q}^{(1)}$	$\mathcal{O}_{arphi u}$	$\mathcal{O}_{arphi d}$
$\lambda = 0$	1	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$	$rac{\hat{s}}{\Lambda^2}$
$\lambda = \pm 1$	$rac{M_Z}{\sqrt{\hat{s}}}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$	$rac{\sqrt{\hat{s}}M_Z}{\Lambda^2}$

Simulation details

- Montecarlo generation: Madgraph5_aMC@NLO v.2.7.3; showering: Pythia 8.2; detector simulation: Delphes v.3.4.1 with FCC-hh card. SMEFT@NLO UFO (http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO)
- Signal simulated at LO and corrected to (QCD+QED) NLO with k-factors. Gluon initiated processes simulated at LO. The rest simulated at QCD NLO.
- Parton level generation cuts:

Cut	Channel		
Cut	$Z o u ar{ u}$	$Z \rightarrow l^+ l^-$	
$p_{T,\min}^j$ [GeV]	30		
$p_{T,\mathrm{min}}^{\gamma} \; [\mathrm{GeV}]$	50		
$p_{T,\mathrm{min}}^{l}$	0 30 (only for LO samples)		
$ \eta_{max}^{\gamma,j} $	6.1^{1}		
$ \eta_{max}^l $	∞ 6.1		
$\Delta R^{\ell,\gamma l}$	0.01		
$\Delta R^{\gamma\gamma}$	0.25 (0.01 for LO samples)		
$p_T^{V,j}$	$\{0, 200, 400, 600, 800, 1200, \infty\}$		

Analysis details

Selection cuts and binning:

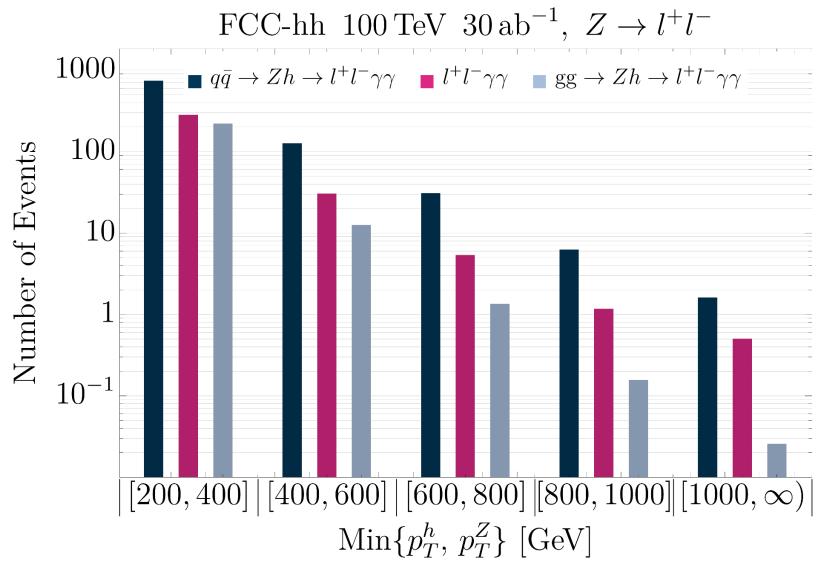
$Z o \nu$	$z\bar{ u}$ Z -	$\rightarrow l^- l^+$
Bins of $ y^h $	Bins of $min\{p_T^h, p_T^Z\}$	Bins of $ y^{Zh} $
[0, 2), [2, 6]	[200, 400)	
	[400, 600)	
[0, 1.5), [1.5, 6]	[600, 800)	[0, 2), [2, 6]
[0, 1), [1, 6]	[800, 1000)	
[0, 1), [1, 0]	$[1000, \infty)$	

	Selection cuts
$p_{T,\mathrm{min}}^{\ell} [\mathrm{GeV}]$	30
$p_{T,\mathrm{min}}^{\gamma} \; [\mathrm{GeV}]$	50
$m_{\gamma\gamma} \; [{ m GeV}]$	[120, 130]
$m_{l^+l^-}$ [GeV]	[81, 101]
$\Delta R_{ m max}^{\gamma\gamma}$	$\{1.3, 0.9, 0.75, 0.6, 0.6\}$
$\Delta R_{ m max}^{l^+l^-}$	$\{1.2, 0.8, 0.6, 0.5, 0.4\}$
$p_{T,\text{max}}^{Zh} [\text{GeV}]$	{200, 600, 1100, 1500, 1900}

K-factors for signal in 1+QCD+QED format

p_{Tmin} bin [GeV]	$Zh o \ell\ell\gamma\gamma$	$Zh o u u \gamma \gamma$	$Wh \to \nu \ell \gamma \gamma$
0 - 200	1 + 0.59 - 0.07 = 1.52	1 + 0.26 - 0.06 = 1.20	1 + 0.17 - 0.04 = 1.13
200-400	1 + 0.52 - 0.09 = 1.43	1 + 0.31 - 0.09 = 1.22	1 + 0.28 - 0.09 = 1.19
400 - 600	1 + 0.64 - 0.14 = 1.50	1 + 0.37 - 0.14 = 1.23	1 + 0.28 - 0.17 = 1.11
600 - 800	1 + 0.69 - 0.18 = 1.51	1 + 0.40 - 0.18 = 1.22	1 + 0.35 - 0.24 = 1.11
800 - 1000	1 + 0.70 - 0.24 = 1.46	1 + 0.40 - 0.24 = 1.16	1 + 0.39 - 0.32 = 1.07
$1000-\infty$	1 + 0.69 - 0.32 = 1.37	1 + 0.40 - 0.32 = 1.08	1 + 0.36 - 0.40 = 0.96

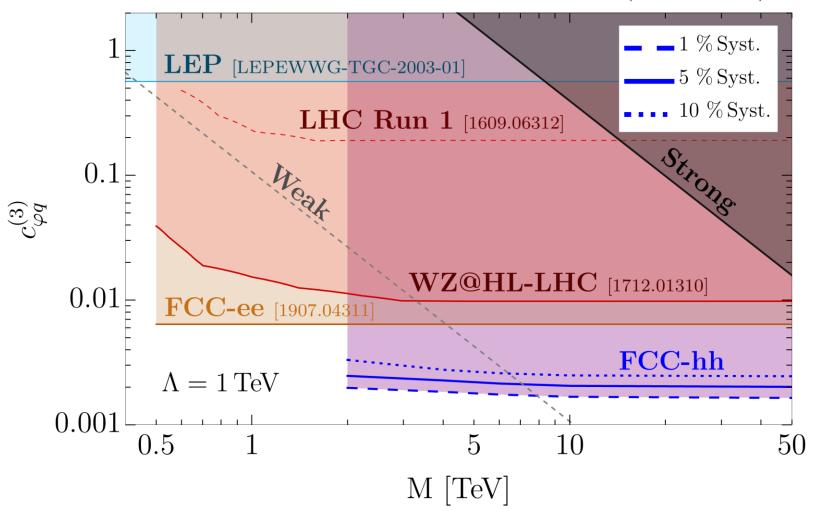
Zh.


More results

Events per bin for the relevant processes in the neutrino channel. Whiis part of the signal because it is affected

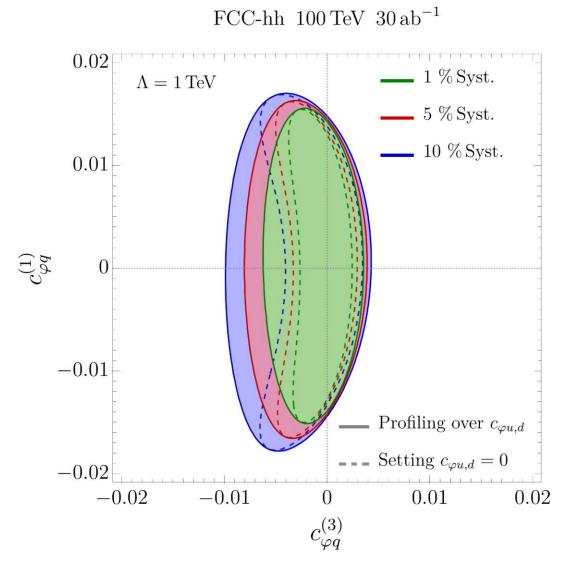
by $\mathcal{O}_{\varphi q}^{(3)}$. FCC-hh $100 \,\mathrm{TeV} \,30 \,\mathrm{ab}^{-1}, \,Z \to \nu \bar{\nu}$ 10^{4} $gg \to Zh \to \nu \bar{\nu} \gamma \gamma$ $W\gamma \gamma$ 1000 Number of Events 100 10 $[200, 400] \, | \, [400, 600] \, | \, [600, 800] \, [800, 1000] \, [1000, \infty)$ $\operatorname{Min}\{p_T^h, E_T^{miss}\}\ [\text{GeV}]$

Events per bin for the relevant processes in the leptonic channel.

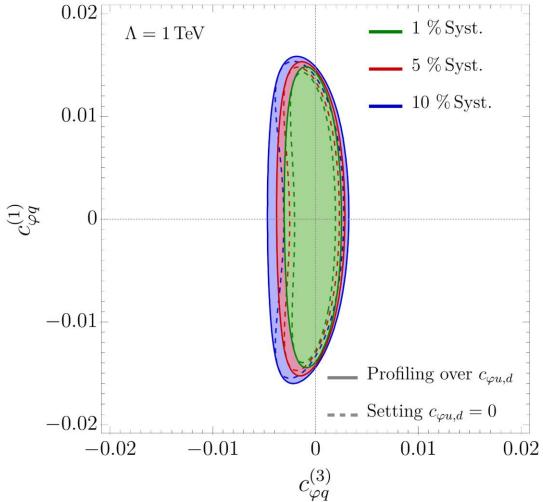


Zh. + Wh.

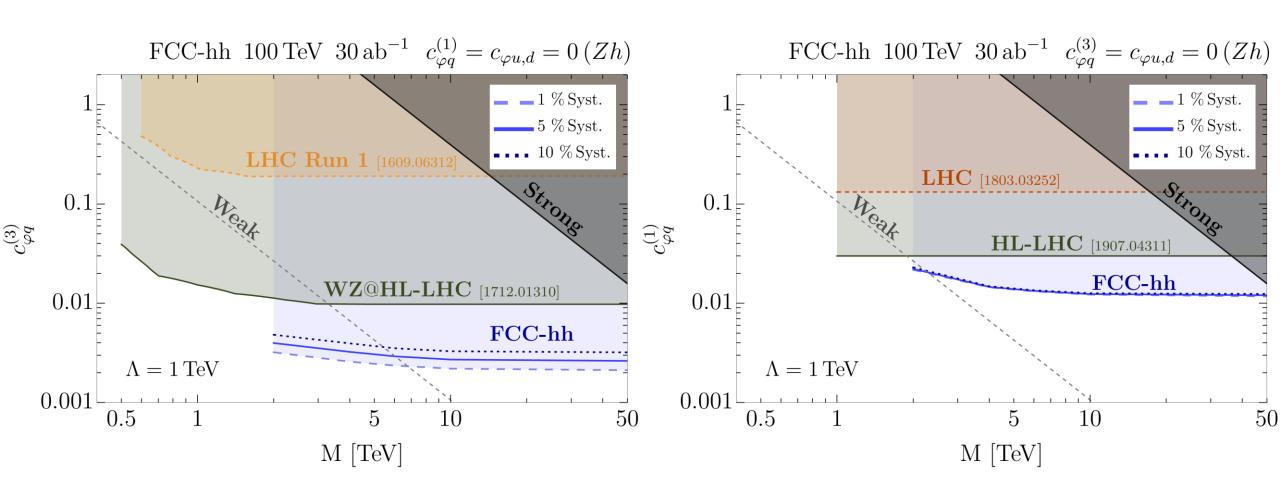
More results


Bounds on $\mathcal{O}_{\varphi q}^{(3)}$ with one operator fit combiningthe Wh and Zh processes as a function of the NP scale M.

FCC-hh
$$100 \,\text{TeV} \, 30 \,\text{ab}^{-1}$$
, 1-op. fit, $(Zh + Wh)$



95% CL bounds



FCC-hh $100 \,\text{TeV} \, 30 \,\text{ab}^{-1} \, (Zh + Wh)$

95% CL bounds

95% CL bounds summary

Coefficient	Profiled Fit		One Operator Fit	
$c_{arphi q}^{(3)}$	$[-5.2, 3.1] \times 10^{-3}$	1% syst.	$[-2.1, 2.0] \times 10^{-3}$	1% syst.
	$[-6.7, 3.3] \times 10^{-3}$	5% syst.	$[-2.6, 2.4] \times 10^{-3}$	5% syst.
	$[-8.2, 3.7] \times 10^{-3}$	10% syst.	$[-3.2, 2.8] \times 10^{-3}$	10% syst.
$c_{\varphi q}^{(3)} \\ (+Wh)$	$[-2.5, 2.1] \times 10^{-3}$	1% syst.	$[-1.6, 1.6] \times 10^{-3}$	1% syst.
	$[-3.0, 2.4] \times 10^{-3}$	5% syst.	$[-2.0, 1.9] \times 10^{-3}$	5% syst.
	$[-3.7, 2.7] \times 10^{-3}$	10% syst.	$[-2.4, 2.2] \times 10^{-3}$	10% syst.
$c_{arphi q}^{(1)}$	$[-1.3, 1.4] \times 10^{-2}$	1% syst.	$[-1.1, 1.15] \times 10^{-2}$	1% syst.
	$[-1.5, 1.5] \times 10^{-2}$	5% syst.	$[-1.1, 1.2] \times 10^{-2}$	5% syst.
	$[-1.6, 1.5] \times 10^{-2}$	10% syst.	$[-1.2, 1.2] \times 10^{-2}$	10% syst.
$c_{arphi u}$	$[-2.0, 1.6] \times 10^{-2}$	1% syst.	$[-1.9, 0.89] \times 10^{-2}$	1% syst.
	$[-2.1, 1.7] \times 10^{-2}$	5% syst.	$[-2.1, 0.96] \times 10^{-2}$	5% syst.
	$[-2.2, 1.8] \times 10^{-2}$	10% syst.	$[-2.2, 1.0] \times 10^{-2}$	10% syst.
$c_{arphi d}$	$[-2.1, 2.3] \times 10^{-2}$	1% syst.	$[-1.4, 2.2] \times 10^{-2}$	1% syst.
	$[-2.2, 2.4] \times 10^{-2}$	5% syst.	$[-1.5, 2.2] \times 10^{-2}$	5% syst.
	$-[-2.3, 2.5] \times 10^{-2}$	10% syst.	$-1.5, 2.2] \times 10^{-2}$	10% syst.