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Deep Learning Landscapes: 10,000 Foot View
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Landscapes are ubiquitous, important, and hard.
hat tip also @ spin glasses, protein folding.



calculus, Riemannian geometry, algebraic topology,
group theory, algebraic geometry etc. ..

Newtonian mechanics leads to calculus,
Chern-Simons observables for knot invariants,
Mirror symmetry of algebraic varieties ... .

The Usual Story: Math and Physics



A

CS. The New Kid in Town

New Developments in Deep Learning
and Quantum Information



Connecting @ Physics / ML Interface

%
‘ g ; Physics n ML

Institute for Artificial Intelligence
and Fundamental Interactions (IAIFI)

one of five new NSF Al research institutes, this one
at the interface with physics!

MIT, Northeastern, Harvard, Tufts.

ML for physics / math discoveries?
Can physics / math help ML?

Sign up for our mailing list: www.iaifi.org.

Physics Meets ML

virtual seminar series, “continuation” of 2019
meeting at Microsoft Research.

Bi-weekly seminars from physicists and CS,
academia and industry.

Organizers: Bahri (Google), Krippendorf
(LMU Munich), J.H., Paganini (DeepMind),
Ruehle (CERN), Shiu (Madison), Yang (MSR)

Sign up at www.physicsmeetsml.org.

Feel free to contact me!

e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com

ML for Math:
e.g. “Learning to Unknot”: 2010.16263

ML for Strings:
e.g. “Statistical Predictions in String Theory
and Deep Generative Models”: 2001.00555


http://www.iaifi.org
http://www.physicsmeetsml.org
mailto:jhh@neu.edu
http://www.jhhalverson.com

But this is PHENO 2021

and so I'll focus on PHENO aspects of these subjects.

Best takeaways from the string landscape in 2021?

Can we use pheno to understand neural networks?



This Talk: Two Main Points

Part 1) String Pheno in 2021
Takeaway: draw vacua V ~ U(known string constructions),
many ALPs, many gauge sectors, light and weakly coupled when controlled.

Potentially detectable remnant DOF are everywhere — problems and opportunities.

Part 2) Neural Network Pheno
Takeaway: neural networks are random functions from nearly-Gaussian dists.
This is like in particle physics! Model non-Gaussianities via QFT.

Use duality to determine symmetries of neural net effective actions.



Part 1) String Pheno in 2021

a broad view of what we know about the String Landscape.



The String Landscape

quantum theory of gravity, candidate TOE.
can give rise to semi-realistic particle-cosmo.

extra space dimensions — compactify.
geometry and topology determine 4d physics.

Landscape: many solutions / vacua of theory.
e.g. Kreuzer-Skarke CY3s, or 107>° F-theory geometries.
e.g. 10272909 fluxes on single geometry.

Bubble nucleation — predictions are statistical.
Idea: dynamics affect statistics. anthropics, too?




Don't know the right distribution on vacua.

But if we drew from a uniform distribution,
given what we know in 2021, what would we find?

(Caveat: the broader we go, the fewer details are worked out.
Think impressionism, not hi-res photos).



Largest Ensemble of Concrete Visible Sectors

A Quadrillion “Standard Models”

N
\
’

N\

Result: 10" provably distinct, fully-consistent
F-theory compactifications with exact chiral
spectrum of the MSSM  [cvetic,JH, Lin, Li, Tian] 2019

But They’re Constrained

The following cannot all be true:

1) our vacuum is lives in this (or related) ensemble.
2) the theory is controlled (SUGRA approx.)

3) No additional dark sectors on seven-branes.
Crucial to 1) is the correct SM gauge couplings.

Upshot: There's no free lunch, we can't just tune the
string EFTs at will to whatever we want.

[Cvetic, J.H,, Lin, Liu, Tian] 2019



It's a big world out there: F-theory

Geometry with the Most Flux Vacua

from precision knowledge of elliptic CY4, we think
we know the geometry with the most flux vacua.

O ( 10272,000)

Far eclipses original 10°°°!

But (before fluxes), minimal geometric gauge group

Gmax = Ea x F2 x (G2 x SU(2))16

and also many ALPs. Complicated cosmology.

[Taylor, Wang] 2015

Largest Concrete Ensemble of Geometries
On Algorithmic Universality in F-theory Compactifications

James Halverson, Cody Long, and Benjamin Sung
Department of Physics, Northeastern University
Boston, MA 02115-5000 USA
(Dated: June 9, 2017)

We study universality of geometric gauge sectors in the string landscape in the context of F-
theory compactifications. A finite time construction algorithm is presented for 3 x 2.96 x 107°° F-
theory geometries that are connected by a network of topological transitions in a connected moduli
space. High probability geometric assumptions uncover universal structures in the ensemble without
explicitly constructing it. For example, non-Higgsable clusters of seven-branes with intricate gauge
sectors occur with probability above 1-1.01x 1077°°, and the geometric gauge group rank is above
160 with probability .999995. In the latter case there are at least 10 Ejs factors, the structure of
which fixes the gauge groups on certain nearby seven-branes. Visible sectors may arise from Eg or
SU(3) seven-branes, which occur in certain random samples with probability ~ 1/200.

Title with a point: concrete construction algorithm.
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Random draw? Geometry ~ Unif(This Ensemble).
Has ~ 750 gauge sectors, # of ALPs ~ Thousands



PHENO Takeaway: Remnant Degrees of Freedom

35 Years of String Pheno — String Remnants Since Then: Implications of Control
3 Typical Stringy Remnants 11 . . .

01, MASIOINGEL BB « o« o e e o e I Generic vacua arise at large # topological cycles.
3.1.1 Moduli Domination . . . . . . ... ... 11
3.1.2  Axion Inflation, Dark Matter, and Dark Radiation . 12

32 Exteiided Gaiige S6ctons : v simen s man i SEE s MEE S8 EEE GE B 13
3.2.1 TeV-Scale Z's and other Extended Gauge Symmetries . . . . . . ... ... 13 o
3.2.2 Extended Non-abelian Gauge Sectors and Hidden Sector Dark Matter . . . 17 The Kreuzer- Skarke Axlverse

3.3 Particles Beyond the Standard Model . . . . . .. .. ... ... ... ....... 18
3.3.1 Extended Higgs/Higgsinosectors . . . . ... ... ............. 18
332 Quasi-Chiral Bxotics . v : v vwmiwonm s won cawen sawen o0 19
3.3.3 Absence of Large Representations . . . . .. ................. 21

34 é;jplml;:lz:znﬁlﬁra(rjchl:fd Cnlm S E 1‘_’1?5 R ﬁ Mehmet Demirtas,” Cody Long,’ Liam McAllister,* and Mike Stillman®
3.4.1 Leptoquark, Diquark, Dilepton, and Rp-Violating Couplings . . . . . ... 21
3.4.2 Family Nonuniversality . . ... ........................ 22 ¢ Department of Physics, Cornell University, Ithaca, NY 14853, USA
3.4.3 Mechanisms for Yukawa Hierarchies . . . . . . ... ... ... .. ... .. 22 b . - ) : 4
344 Nonstandard Neutrino Mass Mechanisms . . . . . . . ... . ... ... 23 Department of Physics, Northeastern University, Boston, MA 02115, USA
3.4.5 Perturbative Global Symmetries from Anomalous U(1)" . . ... ... ... 24 “‘Dcpartmcnt of Mathematics, Cornell University, Ithaca, NY 14853, USA
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35.3 Environmental Selection . . o s v wv s v cws v s v b n i o e s s an 26 mcallister@cornell.edu, mike@math.cornell.edu
3.5.4 Other Possible Remnants/Effects . . ... .................. 27

Remnants: new DOF, apparent accidental
consequences from the UV, not motivated by
shortcomings of SMs of particle physics or cosmology.

Result: Demanding control pushes you out in the
“stretched Kahler cone”, making remnants more
important (light ALPs, weak gauge couplings).

from TASI Lectures: [J.H., Langacker] 2018



Illustrative Example: ALP-Photon Couplings

[J.H., Long, Nelson, Salinas] 2019

A Model Narrative from String Theory
Goal: well-motivated string ideas for PHENO.
If string theory is true:
1) it has a photon.
2) ALPs are a good bet, with # ALPs = N large.

if controlled, many ALPs should be light.

3) no symmetry forbids 8.,y N EFT,
many ALPs couple to photon!

Q: how goes E[gaw] scale with N in the landscape?

Large N is where most of it lives.
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Note well: used a computationally precise

but nonetheless toy model for photon.




Part 2) Neural Network Pheno

Deep relationship between NNs and QFT.
Opens up an avenue in theoretical ML.

based on 2008.08601 and work to appear this week,
both with my amazing students, A. Maiti and K. Stoner.



The Linchpin of the Revolution: Neural Networks
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Supervised: Generative Models: Reinforcement: Natural Language:
NN is powerful function that NN is powerful function that maps NN is powerful function that, ~ NN is powerful function that,
predicts outputs (e.g. class draws from noise distribution to e.g., picks intelligent e.g, extends a sequence,

labels), given input. draws from data distribution. state-dependent actions. given a prompt.



Neural Networks = Powerful Functions

A neural network is just a function:

fon : RAim — Rt

with continuous learnable parameters 60
and discrete hyperparameters N.
Training updates € to improve performance.

Crucial for today: 6 ~ P,
parameters are draws from some distribution.



So, fire up your code

and have it create a neural network.

It's a random function!



Do it again.

It's another random function.



Again and again and again.

All different, all random functions.



But from what distribution?

We normally think of NNs as having an architecture with random params.

But they're also random functions, and we can
study them instead in function space.



What Distribution? Sharpening with the Simplest Example

[Neal], 90s

A single-layer feedforward network is just

. Wo, bo o W1, b1
fon : Rén s RV &y RN s [Rfout

f(flj) — Wl (O'(Woaj —|— bo)) _|_ bl parameters drawn as bg, by ~ N (up, 07)

Wo ~ N (pw, oy /din) Wy ~ N (uw, o3y /N)

Limit of interest: infinite width N — o,

Then output adds an infinite number of i.i.d. entries from W, matrix, so CLT applies, output drawn from Gaussian!
Language: the neural network f is drawn from a Gaussian process, i.e. Gaussian function-space distribution.



“Most” architectures admit GP limit

Single-layer infinite width feedforward networks are GPs. ~ iean. witiamg 1990

Deep infinite width feedforward networks are GPs.  neeetal, 207, Matthews etat, 2018)
|I'T|:Inlte Chan nEl CN NS are GPS [Novak et al., 2018] [Garriga-Alonso et al. 2018]

Tensor programs show any standard architecture admits GP limit. v 201

infinite channel limit [5, 6]. In [7, 8, 9], Yang developed a language for understanding which
architectures admit GP limits, which was utilized to demonstrate that any standard architecture
admits a GP limit, i.e. any architecture that is a composition of multilayer perceptrons, recurrent
neural networks, skip connections [10, 11|, convolutions [12, 13, 14, 15, 16] or graph convolutions
[17, 18, 19, 20, 21, 22|, pooling [15, 16], batch [23] or layer [24] normalization, and / or attention
[25, 26]. Furthermore, though these results apply to randomly initialized neural networks, appro-
priately trained networks are also drawn from GPs [27, 28]. NGPs have been used to model finite

tons of examples cited
in our paper admit GP limits

neural networks in [29, 30, 31|, with some key differences from our work. For these reasons, we
believe that an EFT approach to neural networks is possible under a wide variety of circumstances.

GP property persists under appropriate training. ecoteta 2081 1ecetal, 201)



Free Field Theory is a Gaussian Process
7 = / D¢ e 5l S[g] = / d'z ¢()(0 +m?)o(x)

So infinite neural networks are like free field theory!

Statistics entirely determined by one-point function (mean)
and two-point function (GP kernel),
compute correlators in terms of Feynman diagrams.



Ggll(xbxm%,m) = K(z1,22)K(x3,24)

+ K (1, 23)K (29, x4) + K (21, 24) K (22, 73)
X1 X3 T T3 X1 T3




What about finite-N networks?

The function space distribution is generally non-Gaussian.
But non-Gaussianities — O as N — .

Large-but-finite N?
Weakly coupled interactions from the small non-Gaussianities.

a bit different, but see also:
[Dyer, Gur-Ari], [Yaida]



Non-Gaussian Processes (NGPs), EFTs, and Interactions

Punchline: finite N networks that admit a GP limit Wilsonian EFT for NGPs:
ShOUld be dl‘awn from non'GaUSSian pI’OCGSS. (NGP) e Determine the symmetries (or desired symmetries) respected by the system of interest.

e Fix an upper bound % on the dimension of any operator appearing in AS.
S — S GP _|_ A S e Define AS to contain all operators of dimension < k that respect the symmetries.
determines NGP “effective action” = log likelihood.
where, e.g., could have a model: Some art in this, but done for decades by physicists.

AS = / d%n g g f@)?+ A f@) +af(@)’+kf(@)’+...]
Experiments below: single-layer finite width networks
S = Sgp +/ d%z [\ f(2)* + K f(2)°]

such non-Gaussian terms are interactions in QFT.
their coefficients = “couplings”

NGP / finite NN Tnteracting QF T odd-pt functions vanish — odd couplings vanish.
inputs (z1,...,x;) | external space or spacetime points
kernel K (x4, 2z2) free or exact propagator . .
network output f(z) interacting field k is 1/N suppressed rel. A, somes more irrelevant
log probability effective action 5 (Wilsonian sense), gives even simpler NGP distribution.



Once Again, Feynman Diagrams for NNs
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point: theory equations that
actually enter our NN codes.



Neural Network Pheno

Modeling interactions with AS, constraining with experiments,
making new predictions, and verifying?

This is neural network phenomenology!
Hope to do it for state-of-the-art networks (transformers)?

Could lead to real ML breakthroughs.
(e.g., the one-point function of the trained network
distribution is the central object in supervised learning.)



One Crisp Result

To prove you can actually do things with this.

(See also: backup slides).



Symmetries of NN distribution?

[Maiti, Stoner, J.H.] to appear this week.

Clearly any NN pheno would benefit from G™ (1, on) = E[f(71) ... f(2n)]
knowledge of the expected symmetries of the dist. 1

=7 df f(z1)...f(zn) Po
We could use experiments to determine them.

1
:Z_f/Df f(x1) . f(zn) Py

But in fact we can use duality: parameter space and

function space give two dual perspectives on NN! Example below: SO(D) output symmetry of NN
distribution, assuming linear output layer with
Specifically: correlation functions are fundamental in invariant weights and biases (e.g. mean O Gaussian).

the NN system, but can be computed in parameter or

function space duality frames. P
P Y G, (@1 @h) = ElRiygs S, @1) - Bip fy, ()

7:1...7,71

1
Can deduce symmetry properties ) /DWDbDGg Ravin (Wiaka 9 (0) + 832) - - R (Wiaho G, () + b5 ) P PoF,

: - 1 dpd . ;
of function space description =7 / |[R™H PDWDb DOy (Wi k, g (1) + b3y) - - - Wik, G (20) + b, ) Proryiy P P,
from their symmetries. = E[fi,(z1) ... fi, (za)] = G® (21, ..., z0), ®)



o
=)

N =55
B N =23

N = 2483 (projected) |
1

STROBE-X1 CHANDRA

Ju—
o

(0]

Part 1) String Pheno in 2021 ookl L, LI
Takeaway: draw vacua V ~ U(known string constructions), logig (gars X GeV)
many ALPs, many gauge sectors, light and weakly coupled when controlled.

Once Again: The Two Main Points
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Probability density
j=}

Potentially detectable remnant DOF are everywhere — problems and opportunities.
Complements shifting paradigms (?) in pheno.

Part 2) Neural Network Pheno
Takeaway: neural networks are random functions from nearly-Gaussian dists.

This is like in particle phenomenology! Model non-Gaussianities via EFT,

Use duality to determine symmetries of neural net effective actions.




General Conclusion:

What's happening in computer science is special.
Relative to math and physics, it's in its infancy,
and it will likely be woven into the math / physics story.

Our most cherished physics problems are often unwieldy,
but we have new opportunities to use deep learning for progress.

For me: that's the string landscape and mathematics,
but the toolbox is general and it's a great time to dive in.



Thanks!

Questions?

Or get in touch after:

e-mail: jhh@neu.edu
Twitter: @jhhalverson

web: www.jhhalverson.com
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A Flash of Some NN-QFT Experimental Results

2
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A Flash of Some NN-QFT Experimental Results

Experimental description

NGP correlators become GP correlators as N — «

ReLU-net 4-pt Deviation, d;, = 1

ReLU-net 6-pt Deviation, d;;, = 1

Experiments in three different single-layer networks,
with RelLU, Erf, and a custom “GaussNet” activation.

Drew millions of models and evaluated on fixed sets
of input to do experiments with correlators and the
EFT description of NN distribution.

log o ma

Dependence of Quartic Coupling on Cutoff

Il
D

ReLU-net Ay, N =20,d;, =1

—— slope = —5.003, R? = 1.0

ReLU-net Ay, N =20,d;, =2

—— slope = —6.004, R* = 1.0
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Note also: G6__~ 1/N?

ReLU-net Ay, N =20,d;, =3

—— slope = —7.004, R? = 0.99998
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Depends on input dimension,
as expected from QFT.
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Verification of EFT Predictions
(o> Azs ANL) Test (MAPE, MSE)
Gauss M, (0.0,0.0,0.0) (100, 0.019)
Gauss M, (0.0046, 0.0, 0.0) (0.0145,6.8 x 10~ )
Gauss M, (0.0043,0.0011,0.0) (0.0144,6.7 x 10~19)
Gauss M; (0.00062, 0.00016,0.0015) (0.0156,7.5 x 10~ 0)
ReLU M, (0.0,0.0,0.0) (100, 0.003)
ReLU M, (6.2 x 10717,0.0,0.0) (0.0035,7.6 x 10~ 12)
ReLU M, (1.2 x 107,8.7 x 1071°,0.0) (0.0013,1.5 x 10~ 12)
ReLU M; (1.2x 10" % 87 x 105,68 x 10777)  (0.0012,1.2 x 10~ 2)
Exf M, (0.0,0.0,0.0) (100, 0.006)
Exf M, (0.039,0.0,0.0) (0.030,8.3 x 10~19)
Exf M, (0.040, —0.00043, 0.0) (0.0042,1.9 x 10~ ™)
Erf M; (0.0019, —0.0054, 0.0063) (0.037,1.1 x 1077)

Test / train split on connected 4-pt function
to verify predictions of measured couplings.



