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WHO AM |

= | am an EXPERIMENTAL Physicist
® | have worked at Fermilab for my entire career (1978 — present)
® | have been working on Neutrino Experiments since 1993

m Before that | studied Hyperon Polarization and Magnetic Moments

® |n the early ‘90’s | worked on the development, operation and analysis of the Fermilab
MINOS and DONUT Experiments

| have also worked on NOvVA, MicroBooNE

® | am currently the Co-spokesperson of DUNE (Deep Underground Neutrino
Experiment)
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A LITTLE HISTORY OF NEUTRINOS

= The existence of a neutrino was hypothesized in 1930 as a ZERO MASS elementary particle to concerve the
concept of conservation of energy in the beta decay process

= The first detection of neutrinos occurred in 1956 in the landmark experiment of Reines and Cowen at the
Savannah River nuclear power plant

= In 1957 Bruno Pontecorvo hypothesized that neutrinos may oscillate, or change from one type to another

= In 1962 a second type or flavor of neutrino was identified in a Brookhaven Laboratory experiment led by
Lederman, Swartz and Steinberger; the charged current neutrino interaction produced a MUON (rather than
electron)

= |n 1973 NEUTRAL CURRENT interactions were detected at CERN by the Gargamelle experiment

= In 1975 the first detection of TAU Leptons at SLAC lead to the prediction of a third flavor of neutrino : the TAU
Neutrino
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A LITTLE HISTORY OF NEUTRINOS : SMOKING GUNS

® |n 1957 Bruno Pontecorvo hypothesized that neutrinos may oscillate, or change from
one type to another !

® |n 1968 neutrinos from the sun were detected in a huge tank of perchloroethylene
(dry cleaning fluid) located in the Homestake Gold Mine in South Dakota; the team
was led by Ray Davis, and the detected number of neutrinos was low compared to
theoretical predictions!!

® |n 1983 studies of atmospheric neutrinos in the Kamiokande (Japan) and IMB (Irvine,
Michigan, Brookhaven) Collaborations measured an anomaly in the muon to electron
neutrino interaction rates!!!
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A LITTLE HISTORY OF NEUTRINOS : MYSTERY SOLVED

= |n 1998 the Super-Kamiokande experiment determined that atmospheric muon neutrinos were “disappearing” as
they traveled from their production to interaction point;as predicted by PONTECORVO more than 20 years
earlier : flavor changing neutrinos have MASS!!!

= The hypothesis by now was that MUON neutrinos were oscillating into TAU neutrinos; HOWEVER, no one had yet detected a TAU
neutrino interaction.

= |n 2000, scientists from the DONUT collaboration announced the recording of 4 TAU neutrino interactions (a
total of 9 interactions were published in the final data analysis)

= |n 2002, the SNO experiment (Canada) announced conclusive evidence that THREE flavors of solar neutrinos
were accounted for.

= |n 2010 the OPERA experiment, using the same detector technique in DONUT, searched for TAU neutrino
appearance using a neutrino beam from CERN. In 2015 they announced the detection of 5 TAU neutrino

interactions.
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NEUTRINOS IN THE STANDARD MODEL
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NEUTRINOS IN OUR UNIVERSE

Neutrinos Dark
10% Matter
63%
Photons
15%
Atoms —
12%

13.7 BILLION YEARS AGO
(Universe 380,000 years old)

’

The Sun in Neutrinos

EVERY DAY NEUTRINOS
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DETECTING NEUTRINOS
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NEUTRINO OSCILLATIONS
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where

. |1/a> is a neutrino with definite flavor a = e (electron), u (muon) or T (tauon),
e |v;) is a neutrino with definite mass m;, 1 = 1,2, 3, sl n2



A FOCUS ON NEUTRINO OSCILLATIONS

Two flavor approximation Three flavors
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ACCELERATOR NEUTRINO EXPERIMENTS




ACCELERATOR NEUTRINO EXPERIMENTS
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Neutrinos

WHY LONG BASELINE?
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THE MINOS EXPERIMENT (2005 — 2016)

Nuclear Physics B (Proc. Suppl.) 159 (2006) 63-68
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NOVA (NUMI OFF-AXIS NEUTRINO APPARATUS)

Very large detector — located on the surface sosn1 18



CERN BEAM TO GRAN SASSO

'y

Monte-Emelius
Alessandria
Perugia
Umbria
Gran Sasso Laborat

Geneva
p Mont Blanc

4
/ _ - Tau neutrino events

ICARUS Liquid Argon Detector

: 3 dauihlﬁ . O I‘ A
(now at FNAL for short baseline p T in OFE

v V. ’Yl

Lt — 552l 09

experiment)

4




LONG-BASELINE NEUTRINO EXPERIMENTS TO DATE

Table 14.3: List of long-baseline neutrino oscillation experiments

Name Beamline Far Detector L (km) E, (GeV)  Year
K2K  KEK-PS Water Cherenkov 250 1.3 1999-2004
MINOS  NuMI Iron-scintillator 735 3 20052013
MINOS+ NuMI Iron-scintillator 735 7 2013-2016
OPERA CNGS Emulsion 730 17 20082012
ICARUS CNGS Liquid argon TPC 730 17 2010-2012
T2K J-PARC Water Cherenkov 295 0.6 2010—
NOvA NuMI Liquid scint. tracking calorimeter 810 2 2014~

Written August 2019 by M.C. Gonzalez-Garcia (YITP, Stony Brook; ICREA, Barcelona; ICC, U.
of Barcelona) and M. Yokoyama (Tokyo U.; Kavli IPMU (WPI), U. Tokyo).

In addition to LBL experiments a program of measurements using reactor neutrinos has contributed 2
to the global knowledge of neutrino mass and mixing parameters .... 5125021



THE RESULTS SO FAR

From PDG 2020

= |n general, the data show consistent results for the better known parameters : 0,,, 0,3,
Am22|, and |Am232 |

= The issues which still require clarification are : the mass ordering discrimination, the
determination of 0,3 and the leptonic CP phase d¢p .

In all analyses the best fit is for the NORMAL mass ordering

All analyses find some preference for the second octant of 0,; but with statistical significance still
well below 3c.

The best fit for in NORMAL ordering is at 0cp ~120° but CP conservation (for 6 = 180°) is still
allowed at a |-2c confidence level

The significance of CP violation in the global analysis is reduced with respect to that reported by
T2K because NOVA data does not show a significant indication of CP violation
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LIQUID ARGON DETECTORS
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LIQUID ARGON DETECTORS

= |onization
= Electron drift velocity
= Electron lifetime — argon purity
= Diffusion
= Recombination
= Scintillation light

= Nitrogen content in the argon
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DEEP UNDERGROUND NEUTRINO EXPERIMENT (DUNE)

Sanford
Underground
Research
Facility -

Fermilab

1300 kilometer baseline
Sanford Underground Research Facility is located at the old Homestake Mine in Lead, South Diakota’



Excavation of LBNF/DUNE caverns
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Horizontal and Vertical Drift TPCs
for Ist and 2" modules

Detector located 1.5 kilometers
underground at Sanford Lab

Detector electronics ——8



Super-Kamiokande J-PARC
' Near Detector 280 m
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Hyper-Kamiokande

A gigantic detector to confront
elementary particle unification theories
and the mysteries of the Universe’s e '




SUMMARY AND OUTLOOK

= For the next several years the NOvA and T2K experiments will continue to make world class measurements to confirm
our understanding of the neutrino mass and mixing parameters

= The DUNE and Hyper-K experiments are beginning construction and once operating will offer unprecedented data sets
to refine the parameters

= The long baseline of the DUNE experiment will enable a definitive measurement of the Mass Ordering within just a
couple of years of operation

= The DUNE and Hyper-K experiments offer complimentary approaches to measuring the challenging parameter, 6¢cp

= Both experiments will also provide laboratories which are sensitive to supernova, solar neutrinos and nucleon decay

= The future is bright for neutrino enthusiasts
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