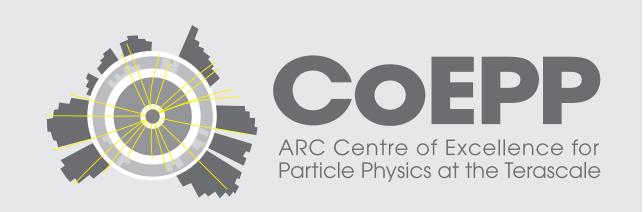
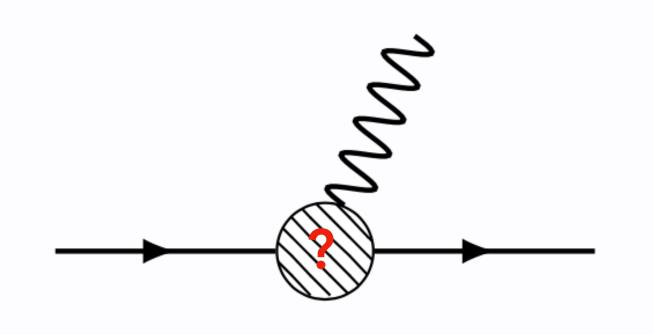
Getting Chirality Right single scalar leptoquarks and lepton magnetic dipole moments

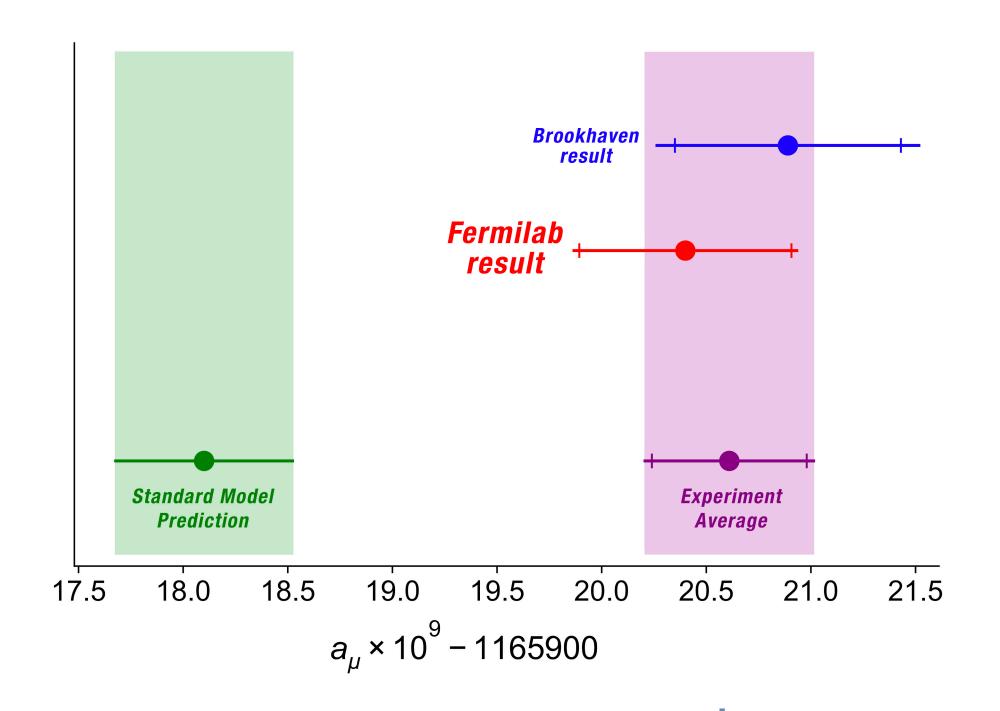
single scalar leptoquarks


Innes Elizabeth Bigaran

Based on **Bigaran, I.**, Volkas, R.R. *Phys.Rev.D* 102 (2020) 7, 075037 • e-Print: 2002.12544 [hep-ph]

Phenomenology 2021 Symposium, University of Pittsburgh





(g-2) of the muon

- I hopefully won't need to explain this in too much detail, as it has made waves in recent months.
- Long-standing anomaly perhaps hinting at new physics that couples to muons
- Many papers investigate possible new physics explanations
- Other muonic anomalies, e.g. b -> s mu mu, corroborate the idea of LFV in BSM physics

Deviation from SM prediction Significance $\Delta a_{\mu} = (2.86 \pm 0.76) \times 10^{-9} \ 4.2\sigma$

(g-2) of the electron

- Established precision test for the SM and QED:
 - 'Measuring' the fine structure constant, α, assumes:

$$a_e^{\rm SM}(\alpha) = a_e^{\rm Exp} \implies \alpha$$

- This would assume no anomaly! So we require a determination of $\,\alpha$ independent of g-2.
- Two conflicting experimental results for α, via interferometry experiments, disagree by more than 5 sigma:
 - 1. Using Cs, anomaly opposite sign to the muon
 - 2. Using Rb, anomaly (?) in the same sign as the muon

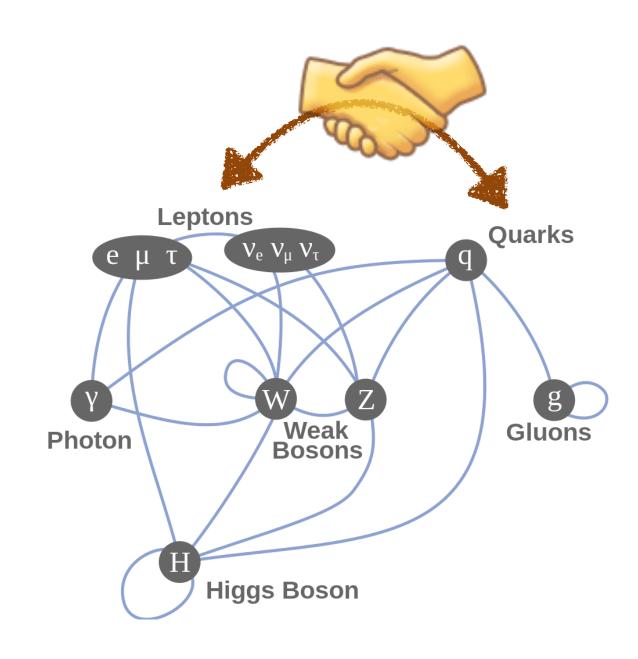
Deviation from SM prediction	Significance
$\Delta a_{\mu} = (2.86 \pm 0.76) \times 10^{-9}$	4.2σ
$\Delta a_e^{\rm Cs} = -(0.88 \pm 0.36) \times 10^{-12}$ Parker et al 1812.04130	
$\Delta a_e^{ m Rb} = (4.8 \pm 3.0) imes 10^{-13}$ Morel et al 2020, INSPIRE: 1837309	1.6σ

So far, no resolution to this disagreement

(g-2) anomalies

$$\mathcal{L}_{a_{\ell}} = \overline{\ell} \left(a_{\ell} \frac{e}{4m_{\ell}} \sigma_{\mu\nu} - d_{\ell} \frac{i}{2} \sigma_{\mu\nu} \gamma_5 \right) \ell F^{\mu\nu}$$

Magnetic dipole moment


$$\Delta a_{\ell} = a_{\ell}^{\text{exp}} - a_{\ell}^{\text{SM}}$$

Deviation from SM prediction	Significance
$\Delta a_{\mu} = (2.86 \pm 0.76) \times 10^{-9}$ $\Delta a_{e} = -(0.88 \pm 0.36) \times 10^{-12}$	4.2σ 2.5σ

While electron g-2 is still unresolved, we focus on the more significant anomaly, also because it is a more interesting problem to tackle.

The Problem

- Anomalies in the electron and muon magnetic dipole moments
- Deviations have opposite sign, but comparable magnitude
- Could there be a common origin via flavour-violating couplings?

Symbol	$SU(3)_C\otimes SU(2)_L\otimes U(1)_Y$
$ ilde{S}_1$	$({f 3},{f 1},-4/3)$
S_1	(3, 1, -1/3)
S_3	$({f 3},{f 3},-1/3)$
\overline{S}_1	$({f 3},{f 1},2/3)$
R_2	(3, 2, 7/6)
$ ilde{R}_2$	(3, 2, 1/6)

Scalar LQs

- Leptoquarks (LQ) are hypothetical particles which directly couple SM leptons and quarks
- There are a finite set of scalar LQ (for a review, see arXiv: 1603.04993)
- LQ masses and Yukawa couplings between SM and BSM fields are generically *free* parameters, e.g.

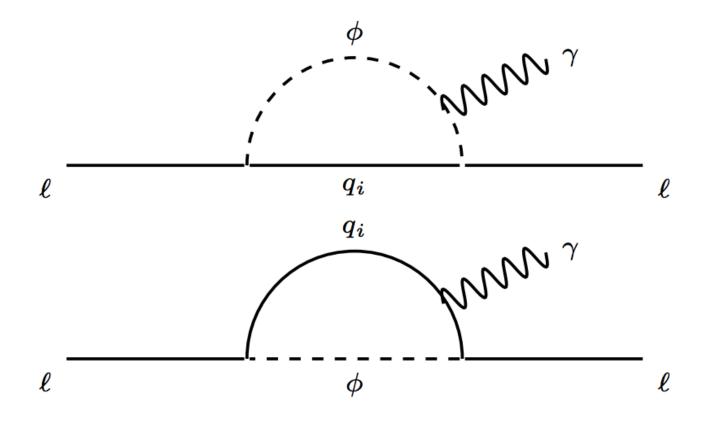
Left-handed coupling

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] \ q \ \phi^{\dagger} + h.c.$$

Right-handed coupling

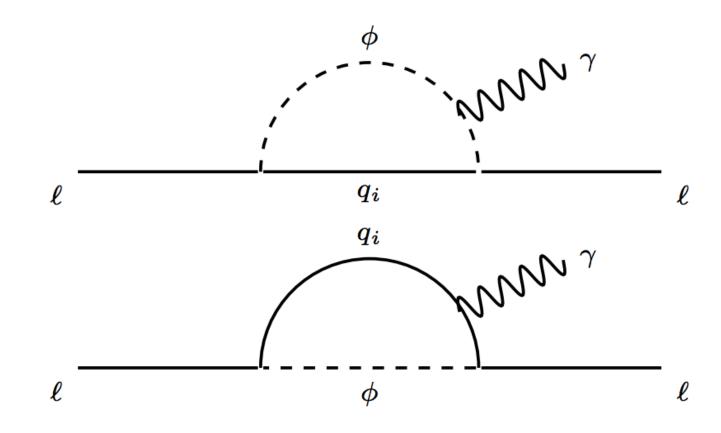
Chiral scalar LQs

Left-handed coupling


$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] q \phi^{\dagger} + h.c.$$

Right-handed coupling

Symbol	$SU(3)_C\otimes SU(2)_L\otimes U(1)_Y$	$(g-2)_\ell$ at $1\mathrm{L}$
$ ilde{S}_1$	$({f 3},{f 1},-4/3)$	X
S_1	(3, 1, -1/3)	✓
S_3	(3, 3, -1/3)	X
\overline{S}_1	$({f 3},{f 1},2/3)$	×
R_2	(3, 2, 7/6)	✓
$ ilde{R}_2$	(3, 2, 1/6)	X


The highlighted LQ are (maximally) chiral

- Maximally-chiral (also just called 'chiral') LQ have both L and R couplings
- Could generate sizeable corrections to (g-2) at one-loop via:

Chiral scalar LQs

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] q \phi^{\dagger} + h.c.$$

$$S_1$$
 (3, 1, -1/3) R_2 (3, 2, 7/6)

$$\Delta a_\ell = -\frac{3m_\ell}{8\pi^2 m_\phi^2} \sum_q \begin{bmatrix} m_\ell (|y_\ell^R|^2 + |y_\ell^L|^2)\kappa \\ \\ + m_q \mathrm{Re}(y_\ell^{L*} y_\ell^R)\kappa' \end{bmatrix}$$
 variable sign

For these two LQ, we can exploit this <u>variable sign term</u> to give flavour-dependent, opposite sign, corrections

Flavour ansatz

- I will preface this next discussion by saying that the what I'm about to discuss **isn't** showing a basisdependence of a physical result (that would be ludicrous!)
- My argument here is that: a choice of basis can affect how <u>clear</u> it is to make definitive claims about a model's viability.

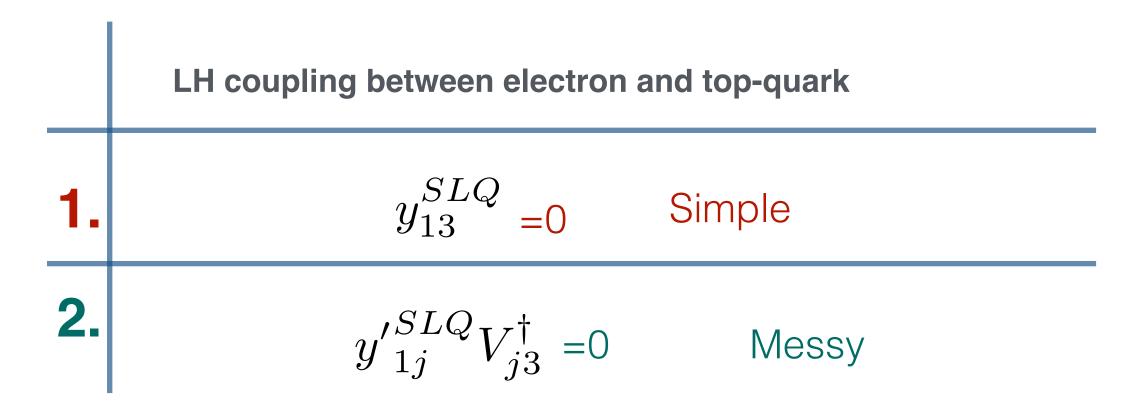
Flavour ansatz

How easy is it to turn on or off couplings between particular flavours?

The answer lies in the choice of where I put the CKM.

 $\mathcal{L}_{\text{int}}^{S_1} = \left(\overline{L_L^c}\lambda_{LQ}Q_L + \overline{e_R^c}\lambda_{eu}u_R\right)S_1^{\dagger} + h.c.,$

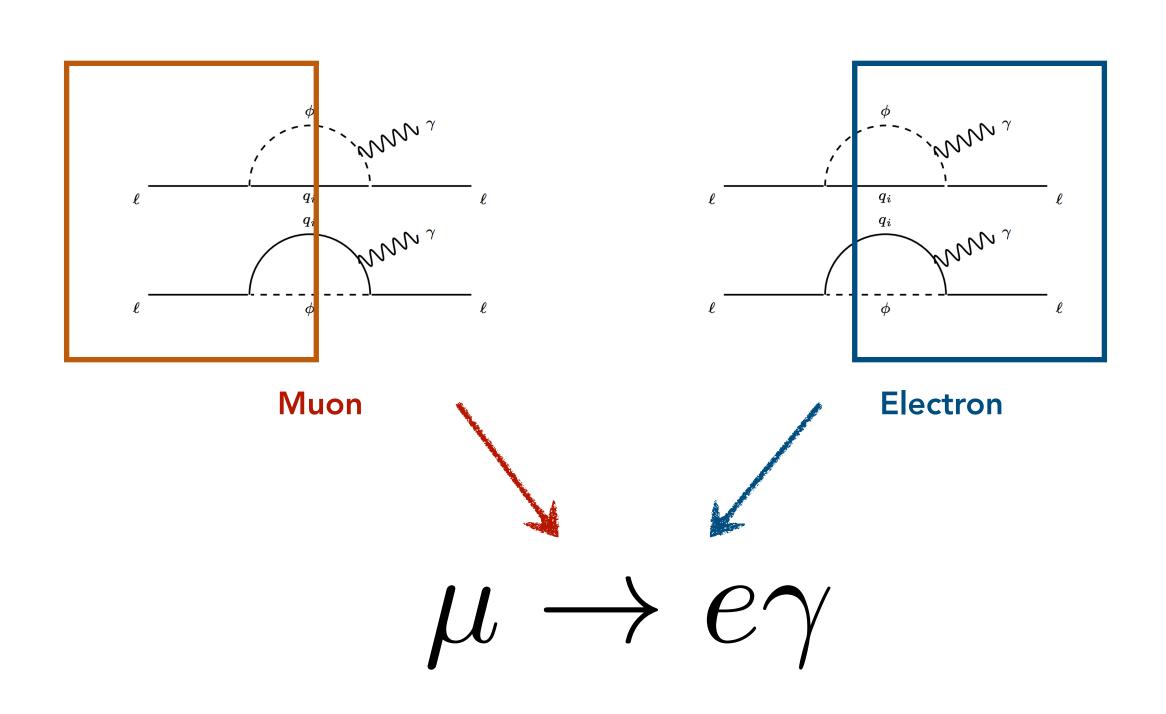
EWSB and rotating fields into mass-eigenstates


Recalling that: $V=\mathfrak{L}_u^\dagger \mathfrak{L}_d$

$$\begin{array}{ll} \textbf{1.} & \mathfrak{R}_e\lambda_{eu}\mathfrak{R}_u\mapsto y^{Seu}, \quad \mathfrak{L}_e\lambda_{LQ}\mathfrak{L}_u\mapsto y^{SLQ} \\ \\ \mathcal{L}^{S_1}\supset y_{ij}^{SLQ}\left[\overline{e_{L,i}^c}u_{L,j}-V_{jk}\;\overline{\nu_{L,i}^c}d_{L,k}\right]S_1^\dagger \\ \\ \text{`Up-type'} & +y_{ij}^{Seu}\overline{e_{R,i}^c}u_{R,j}S_1^\dagger+h.c., \end{array}$$

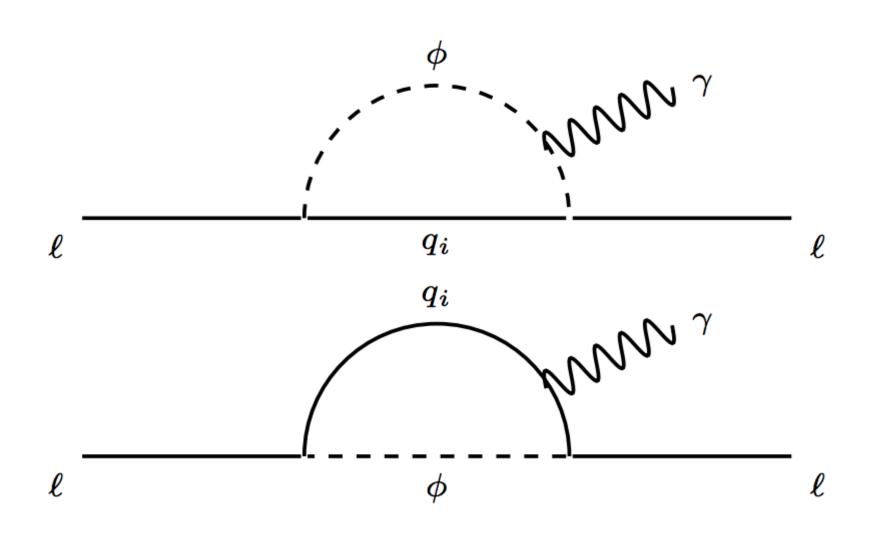
'Up-type' and 'down-type' bases

$$\begin{array}{ll} \textbf{1.} & \mathfrak{R}_e\lambda_{eu}\mathfrak{R}_u\mapsto y^{Seu}, \quad \mathfrak{L}_e\lambda_{LQ}\mathfrak{L}_u\mapsto y^{SLQ} \\ \\ \mathcal{L}^{S_1}\supset y_{ij}^{SLQ}\left[\overline{e_{L,i}^c}u_{L,j}-V_{jk}\;\overline{\nu_{L,i}^c}d_{L,k}\right]S_1^\dagger \\ \\ \text{`Up-type'} & +y_{ij}^{Seu}\overline{e_{R,i}^c}u_{R,j}S_1^\dagger+h.c., \end{array}$$


 Now imagine we want to switch-off a particular coupling: e.g. as above

We should guide our basis choice by looking at what couplings we want to control the most — motivated by observables and constraints

A downside of the 'down-type' basis



- If we *did* work in the down-type quark basis, this makes it hard for us to determine a viable zero texture for the Yukawas
- Why? It turns out that because of:
 - A. The enhancement of a top-quark in the loop
 - B. The strength of the MEG constraint $~\mu
 ightarrow e \gamma$

Even if just a `small' coupling to the top is generated for both lepton flavours, we hit the MEG limit —- **invalidating the model**

You can see how one may be tempted to rule out all scalar LQ models if you only looked in the down-type basis.

$$\mathbf{y}^L \sim \begin{pmatrix} 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{y}^R \sim \begin{pmatrix} 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} \\ 0 & 0 & 0 \end{pmatrix}$$

Establishing the models

Adopting the 'up-type' basis:

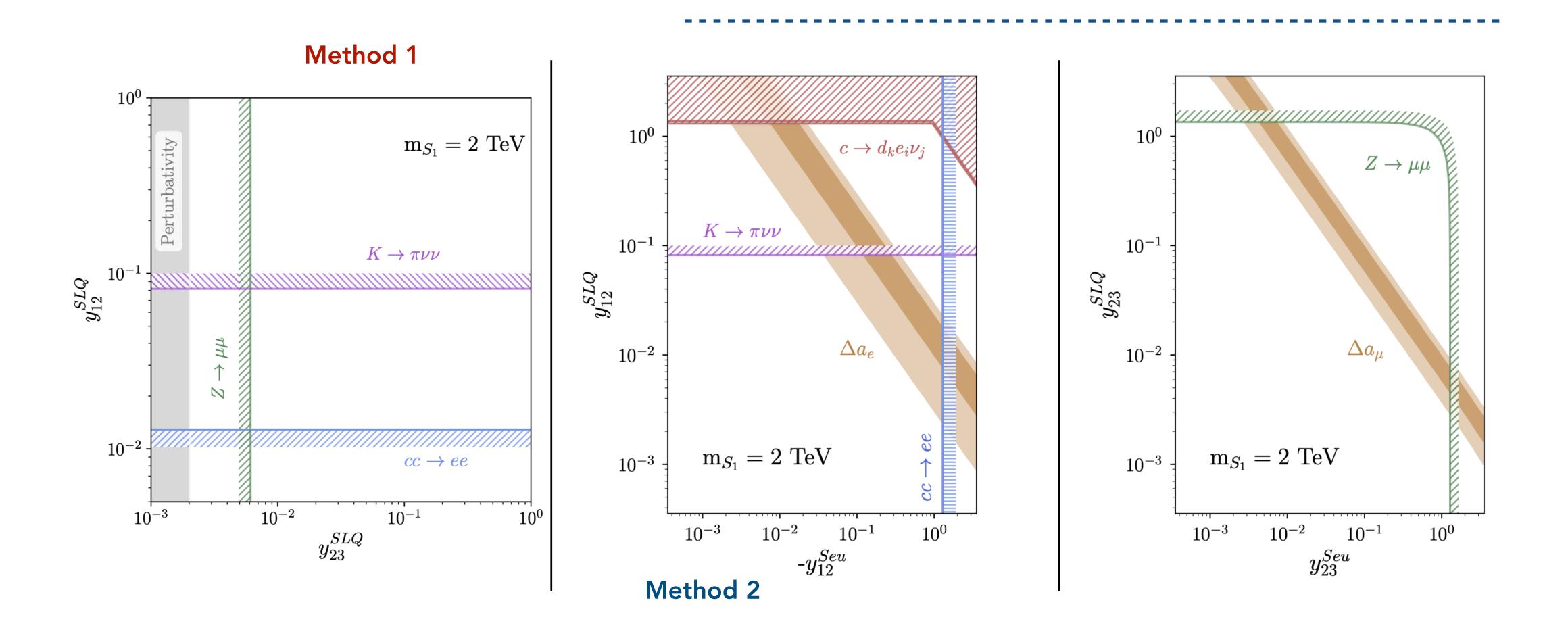
- Contribution to (g-2) of the electron is via a **charm**-containing loop
- Contribution to (g-2) of the muon is via a **top**-containing loop
- Constraints from MEG in particular avoided by having different intermediate SM quarks coupling for each g-2
- Restrict all NP couplings to <u>real values</u>.

$$\Delta a_{\ell}^{S_1} \sim -\frac{m_{\ell} m_q}{4\pi^2 m_{S_1}^2} \left[\frac{7}{4} - 2 \log \left(\frac{m_{S_1}}{m_q} \right) \right] \operatorname{Re}(y_{\ell q}^{L*} y_{\ell q}^R),$$

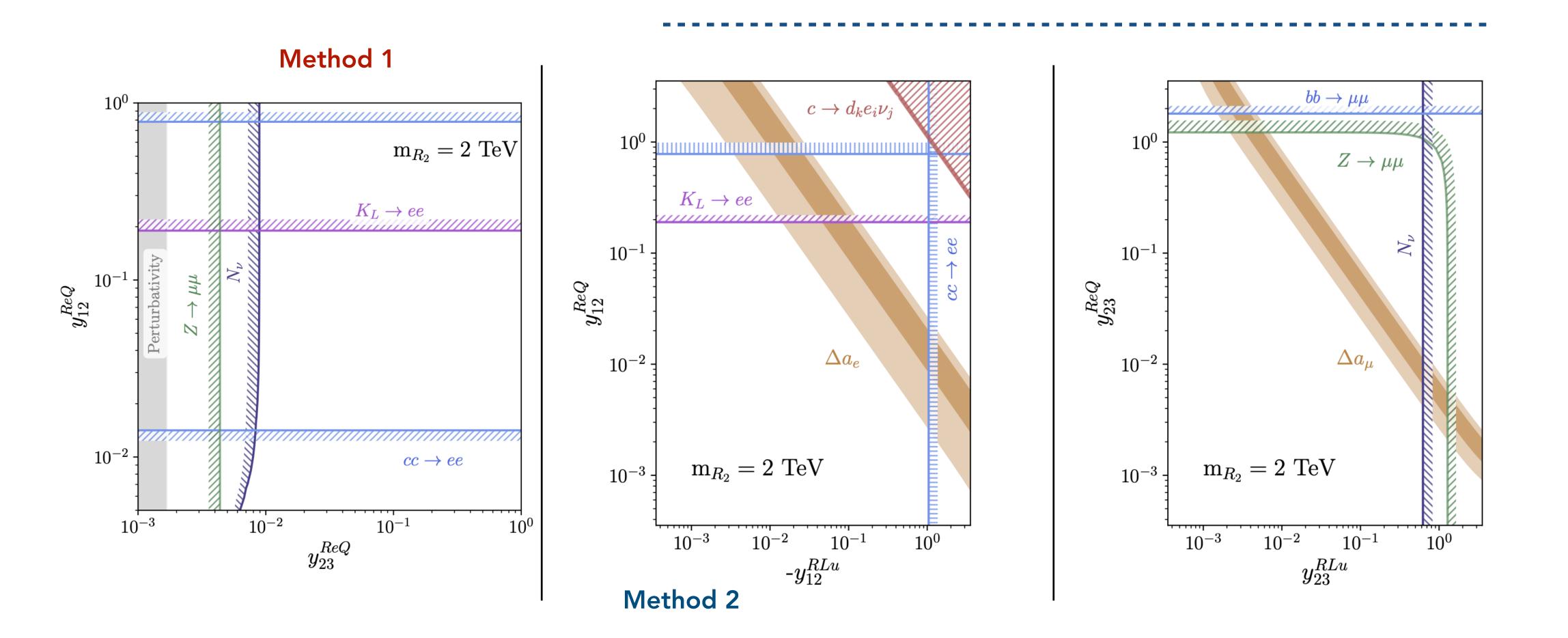
$$\Delta a_{\ell}^{R_2} \sim \frac{m_{\ell} m_q}{4\pi^2 m_{R_2}^2} \left[\frac{1}{4} - 2 \log \left(\frac{m_{R_2}}{m_q} \right) \right] \operatorname{Re}(y_{\ell q}^{L*} y_{\ell q}^R),$$

Single mass scans

Now that we have two viable models, assessing constraints using two different scan methods:


Method 1: Fixed RH couplings around (g-2)

- 1. Logarithmically sample 2 x LH couplings
- 2. Calculate RH couplings according to (g-2), outputting real-value generating point closest to central values
- 3. Check generated RH coupling under perturbativity constraint.
 - 4. Check other constraints


Method 2: decoupled electron and muon sectors

separately sampling LH and RH couplings logarithmically

S1 leptoquark: benchmark mass

R2 leptoquark: benchmark mass

Conclusions

Based on *Phys.Rev.D* 102 (2020) 7, 075037 • e-Print: 2002.12544 [hep-ph]

- We have argued the viability of single LQ simultaneous solutions to anomalies in g-2 of the electron and muon.
- Identified the two maximally chiral scalar LQ, capable of generating sign-dependent contributions to leptonic g-2 observables.
- LFV constraints can be avoided by allowing contribution to the electron g-2 from charm-containing loops, and muon g-2 from top-containing loops.
- Extending to complex couplings motivates consideration of EDMs as well as g-2 (manuscript in preparation)