

The search for rare top production and decay processes with the ATLAS experiment at the LHC

Anıl Sonay on behalf of the ATLAS Collaboration

Pheno2021 24 May 21

Introduction

- The most massive elementary particle ~172 GeV
- Strongest interaction with the Higgs boson
- LHC is a top quark factory
 - → Over 200 million top quark pairs in LHC Run 2 13 TeV data

- The top quark sector offers many opportunities to search for FCNC interactions beyond the SM
- Run 2 data allowed searches for rare top quark production processes.
 - → Measurement of ttZ
 - → Measurement of t̄t̄y
 - → Observation of tZq
 - → First evidence of tītī

Anil Sonay 2 / 20 Pheno2021

- Measurement of ttZ with full Run 2 data
- Trilepton channels different selection in incl./diff.:
 - One b-tag region for unfolding → maximum statistics
 - Two b-tag regions for inclusive measurement → maximum precision & WZ background suppression
- Tetralepton channels four signal regions:
 - Same-flavour/opposite-flavour lepton pairing
 - Different b-tag multiplicities
- Control regions for ZZ and WZ backgrounds
- Unfolding done to both parton and particle level

Leading lepton p_{\perp} [GeV]

- Simultaneous profile likelihood fit of all trilepton and tetralepton signal regions
 + WZ and ZZ control regions
- Differential results dominated by statistical uncertainties and those on signal modelling and b-tagging
- In agreement with NLO+NNLL prediction [Eur Phys. J. C 80 (2020) 428]:

$$0.86^{0.09}_{-0.1}(\text{scale}) \pm 0.02(\text{PDF} + \alpha_s) \text{ pb}$$

The measured cross section:

$$\sigma = 0.99 \pm 0.05 (\text{stat}) \pm 0.08 (\text{syst.}) \text{pb}$$

Channel	$\mu_{tar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} ^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	$1.17 \pm 0.07 \text{ (stat.)}^{+0.12}_{-0.11} \text{ (syst.)}$ $1.21 \pm 0.15 \text{ (stat.)}^{+0.11}_{-0.10} \text{ (syst.)}$
Combination $(3\ell + 4\ell)$	$1.19 \pm 0.06 \text{ (stat.)} \pm 0.10 \text{ (syst.)}$

tty and tWy Production in the eµ Channel

- The measurements are performed in a fiducial phase space.
- Event selection:
 - One electron, one muon (pT> 25 GeV)
 - >=2 jets (>= 1bjet)
 - 1 photon ($\Delta R(I,y) > 0.4$)
- The differential measurement is obtained applying an iterative unfolding procedure.

	Events		
τ̄τγ εμ	2391 ± 130		
$tW\gamma e\mu$	156 ± 15		
Other $t\bar{t}\gamma/tW\gamma$	279 ± 15		
h-fake	78 ± 40		
e-fake	23 ± 12		
Prompt γ bkg.	87 ± 40		
Total	3014 ± 160		
Data	3014		

tty and tWy Production in the eµ Channel

- ATLAS data unfolded to parton level
- Main uncertainty coming from signal and background modelling
- Good agreement is observed between the LO MC and NLO differential distributions and the expectations.
- In agreement with NLO cross section [JHEP 10 (2018) 158]: $38.5_{-2.18}^{0.56} (scale)_{-1.18}^{1.04} (PDF)$

The measured fiducial inclusive cross section: $\sigma = 39.6 \pm 0.8 (\text{stat})_{-2.2}^{+2.6} (\text{syst}) = 39.6_{-2.3}^{+2.7} \, \text{fb}$

Observation of tZq Production

- Measurement of a single top quark in association with a Z boson (tZq production)
 - → Allow for the study of tZ and WZ couplings.
 - → Small NLO QCD corrections
 - → Small deviations from the SM can be interpreted in the SMEFT
- Best signal significance in the trilepton channel
 - → One pair should build a Z mass peak
- Include non-resonant lepton pairs
- Two signal regions (2j1b, 3j1b) plus additional control regions for the largest backgrounds (ttZ, diboson, tt)
- Event selection:
 - → 3 leptons (pT> 28,20,20 GeV)
 - → At least 1 jet (pT> 35 GeV)
 - → 1 btagged jet

- Cross section extracted using a binned maximum likelihood fit performed on the NN output in SRs and Crs
- Observation with $> 5\sigma$

Consistent with the SM expectation of $102^{+5.2\%}_{-1.3\%}(\text{scale}) \pm 1.0\%(\text{PDF}) \text{fb}$

Uncertainty source	$\Delta\sigma/\sigma$ [%]
Prompt-lepton background modelling and normalisation	3.3
Jets and $E_{\rm T}^{\rm miss}$ reconstruction and calibration	2.0
Lepton reconstruction and calibration	2.0
Luminosity	1.7
Non-prompt-lepton background modelling	1.6
Pile-up modelling	1.2
MC statistics	1.0
tZq modelling (QCD radiation)	0.8
tZq modelling (PDF)	0.7
Jet flavour tagging	0.4
Total systematic uncertainty	7.0
Data statistics	12.6
$t\bar{t} + tW$ and $Z + jets$ normalisation	2.1
Total statistical uncertainty	12.9

tītī Production

- Four top production: $pp \rightarrow t \bar{t} t \bar{t}$, is a rare and theoretically challenging process
 - ⇒ σ^{NLO} (tttt) = 12.0±2.4 fb at NLO QCD+EW at 13 TeV arXiv:1711.02116 [hep-ph]

- Extremely high energy scale production makes it naturally sensitive to many BSM models, e.g.
 - → Gluino pair production in SUSY
 - → Heavy pseudoscalar/scalar boson in 2HDM
 - → Four-fermion contact interaction within EFT

14.3%

• Signatures:

- → 2ℓSS / 3ℓ:
 - → Low branching fraction, but small background (ttW, ttZ, non-prompt leptons, charge misidentification)
 - → Eur. Phys. J. C (2020) 80:1085
- → 1ℓ / 2ℓOS :
 - Dominant branching fraction, but large background from tt+jets
 - ATLAS-CONF-2021-013

Anil Sonay 9 / 20 Pheno2021

Analysis Strategy

SS/ML

- Process characterised by leptonic signatures creating a cleaner signal
 - → Main challenge is handling of dominant ttW+jets background
 - Mismodelled at high jet multiplicities
 - Dedicated CR for proper ttW+jets estimation
 - → Further CRs for Fake/Non-prompt lepton background estimations
 - → Data-driven charge misassignment background estimation
 - → 1 inclusive SR with a BDT distribution

18/28OS

- Event signature characterized by one or two OS leptons and high jet multiplicity and b-jet multiplicities
- Main background: tt+jets (incl heavy-flavor) production, which is challenging to model accurately by the MC simulation
- Signal extracted via profile likelihood fit across all event categories including for a complex model of systematic uncertainties

Eur. Phys. J. C 80 (2020) 1085

Region	Channel	N_j	N_b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{ m PV}$
				$200 < H_{\rm T} < 500 {\rm GeV}$	
CR HF e	еее ееµ	-	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	counting
CR HF μ	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 \; {\rm GeV}$	counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	$m_{ee}^{\text{CV}} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^{\ell}$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
				for $N_b \ge 3$, $H_T < 500$ GeV	

Anil Sonay Pheno2021

• First evidence of tttt production in SSML at ATLAS, observed (expected) significance 4.3(2.4)σ

$$\mu = 2.0^{+0.4}_{-0.4} (\text{stat})^{+0.7}_{-0.4} (\text{syst}) = 2.0^{0.8}_{-0.6}$$
$$\sigma_{t\bar{t}t\bar{t}} = 24^{+7}_{-6} \text{fb}$$

Parameter	$NF_{t\bar{t}W}$	NF _{Mat. Conv.}	$NF_{Low m_{\gamma^*}}$	NF_{HF} e	NF_{HF}_{μ}
		1.6 ± 0.5			

- Good agreement obtained between data and post-fit prediction
- Dominant uncertainties on signal strength from tttt theoretical cross-section and modelling, and from tt+>=1b modelling.
- The extracted signal strength for 1L/2LOS: $\mu = 2.2^{+0.7}_{-0.7} (\text{stat})^{+1.5}_{--1.0} (\text{syst}) = 2.2^{1.6}_{-1.2}$
- The combined four-top-quark production cross section is measured to be with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over background-only hypothesis

$$\sigma_{t\bar{t}t\bar{t}} = 25^{+7}_{-6} \text{ fb} \quad \sigma_{t\bar{t}t\bar{t}}^{SM} = 12.0 \pm 2.4 \text{ fb}$$

• Consistent within 2.0 standard deviations with the Standard Model expectation

Summary

- LHC has made measurements from precision to rarity using top quarks
 - ATLAS performs the first **differential measurement** in ttZ, important for new physics searches via anomalous couplings between top and weak bosons
 - Precision measurements in inclusive $t\bar{t}y$ cross section reaching **2.4%** precision in eµ
 - Observation of tZq process at ATLAS
 - Evidence for four-top quark production established at ATLAS

Stay tuned!

BACKUP

FCNC Searches at the LHC

- Flavor changing neutral current decays can occur at one-loop level, but highly suppressed by GIM mechanism in SM
- GIM suppression can be relaxed in several BSM scenarios, leads to various single top production and top decay processes [arXiv:hep-ph/0409342]
- The rarity of such kinds of decays in SM would provide a clear indirect signal of new physics
 - → 2HDM w/ and w/o flavor conservation
 - → Minimal Supersymmetric Standard Model
 - → R-parity violation
 - → Extra dimensions

Analysis Strategy (SS/ML Channel)

- Process characterised by leptonic signatures creating a cleaner signal
 - → Main challenge is handling of dominant ttW+jets background
 - Mismodelled at high jet multiplicities
 - Dedicated CR and VR for proper ttW+jets estimation
 - → Further CRs for Fake/Non-prompt lepton background estimations
 - → Data-driven charge misassignment background estimation
 - → 1 inclusive SR with a BDT distribution

Region	Channel	N_j	N_b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{ m PV}$
				$200 < H_{\rm T} < 500 \; {\rm GeV}$	
CR HF e	еее ееµ	-	= 1	$100 < H_{\rm T} < 250 \; {\rm GeV}$	counting
CR HF μ	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 \; {\rm GeV}$	counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	$m_{ee}^{\text{CV}} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^{\ell}$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
				for $N_b \ge 3$, $H_T < 500$ GeV	

Backgrounds:

Analysis Strategy (1L/2LOS Channel)

- Event signature characterized by one or two OS leptons and high jet multiplicity and b-jet multiplicities
- Main background: tt+jets (incl heavy-flavor) production, which is challenging to model accurately by the MC simulation
- Signal extracted via profile likelihood fit across all event categories including for a complex model of systematic uncertainties

Example BDTs

Systematic Uncertainties ATLAS-CONF-2021-013

Uncertainty source σ_{μ}		
	μ	
Signal Modelling tttt cross section	+0.75	-0.20
<i>tītt</i> ross section <i>tīttī</i> modelling	+0.75	00
	10.00	0.27
Background Modelling		
$t\bar{t}+\geq 1b$ modelling	+0.72	-0.59
$t\bar{t}+\geq 1c$ modelling	+0.41	-0.31
$t\bar{t}$ +jets reweighting	+0.30	-0.25
Other background modelling	+0.30	-0.24
$t\bar{t}$ +light modelling	+0.15	-0.12
Experimental		
Jet energy scale and resolution	+0.49	-0.30
b-tagging efficiency and mis-tag rates	+0.38	-0.26
MC statistical uncertainties	+0.21	-0.19
Luminosity	+0.07	-0.03
Other uncertainties	+0.05	-0.03
Total systematic uncertainty	+1.45	-1.04
Statistical uncertainty	+0.67	-0.65

