Signatures of Toponium Formation in the LHC Run 2 Data

Ya-Juan Zheng (University of Kansas)

Phenomenology 2021 Symposium

Outline

- Toponium
- Production of Toponium at the LHC
- Resconstruction of t and t̄
- Observables of toponium

Top pair production at the LHC

 LHC is a top factory. With 140/fb of integrated luminosity, we expect about 100 million tt events and 5 million are dileptonic ones.

- Both ATLAS and CMS observed excess of Data over the 'SM' prediction at low m(II') bins.
 - ★ This may suggest that tt production near the threshold is underestimated in the 'SM' prediction
 - ★ Could it be a signal of toponium formation below the tt threshold?

Heavy Quarkonium

	spin triplet (J=1)	spin singlet (J=0)
с с (charmonium)	J/ψ, ψ(2S)	$\eta_{ ext{c}}$
bb (bottomonium)	Υ,Υ(2S),Υ(3S), Υ(4S),Υ(5S)	$\eta_{ extsf{b}},\eta_{ extsf{b}}(2S)$
t t (toponium)	θ _t (3g,C=-)	$\eta_{t}(2g,C=+)$
e+e- (positronium)	ortho-positronium ³ S₁ -> ⟩⟨⟨⟨C=−⟩	para-positronium ¹S₀ -> \(\gamma \cdot (C=+) \)

Toponium: Color singlet bound state of top&anti-top quark J=1 Spin triplet θ_t J=0 Spin singlet η_t

$$\overrightarrow{S} = \overrightarrow{S}_q + \overrightarrow{S}_{\overline{q}} \qquad S_Z = S_{q,Z} + S_{\overline{q},Z}$$

$$Symmetric(S,S_Z) \qquad anti-Symmetric \qquad (S,S_Z) \qquad (S,S_Z)$$

$$2S+1=3 \qquad \qquad \underbrace{\uparrow \downarrow + \downarrow \uparrow}_{\sqrt{2}} (1,0) \qquad \qquad \underbrace{\uparrow \downarrow - \downarrow \uparrow}_{\sqrt{2}} (0,0) \qquad 2S+1=1 \qquad Spin singlet$$

$$Spin triplet \qquad \qquad \underbrace{\uparrow \downarrow + \downarrow \uparrow}_{\sqrt{2}} (1,0) \qquad \qquad Spin singlet$$

t and t spin polarisation in $J^{PC}=0$ -+ toponium η_t

$$|\eta_t\rangle = \frac{|\uparrow\rangle_t |\downarrow\rangle_{\bar{t}} - |\downarrow\rangle_t |\uparrow\rangle_{\bar{t}}}{\sqrt{2}}$$

$$\left(\cos\frac{\bar{\theta}}{2}\cos\frac{\theta}{2}\right)^{2}$$

$$= \frac{1+\cos\bar{\theta}}{2}\frac{1+\cos\theta}{2}$$

$$= 1 \quad \text{when } \theta = \bar{\theta} = 0$$

$$\left(\sin\frac{\bar{\theta}}{2}\sin\frac{\theta}{2}\right)^{2}$$

$$=\frac{1-\cos\bar{\theta}}{2}\frac{1-\cos\theta}{2}$$

$$=1 \quad \text{when } \theta = \bar{\theta} = \pi$$

$$\left(\sin\frac{\bar{\theta}}{2}\sin\frac{\theta}{2}\right)^{2} \\
= \frac{1-\cos\bar{\theta}}{2}\frac{1-\cos\theta}{2} \\
= 1 \quad \text{when } \theta = \bar{\theta} = \pi$$

$$+ 2\left(\cos\frac{\bar{\theta}}{2}\cos\frac{\theta}{2}\right)\left(\sin\frac{\bar{\theta}}{2}\sin\frac{\theta}{2}\right)\cos(\bar{\phi} - \phi) \\
= \frac{1}{2}\sin\bar{\theta}\sin\theta\cos(\bar{\phi} - \phi) \\
= \frac{1}{2} \sin\bar{\theta}\sin\theta\cos(\bar{\phi} - \phi) \\
= \frac{1}{2} \sin\bar{\theta}\sin\theta\cos(\bar{\phi} - \phi)$$

$$l^-\downarrow\downarrow l^+$$

Toponium Production at hadron Colliders

• tt in color octet

- The colour-singlet dominates at the threshold
 - the gg-singlet channel dominates
- The J=0 state dominates
 - L=S=0
- The toponium η_t couples to quarks and gluons

Simplified model for η_t production and decay at the LHC

$$\mathcal{L}_{\eta_t} = \frac{1}{2} \partial_{\mu} \phi_{\eta_t} \partial^{\mu} \phi_{\eta_t} - \frac{1}{2} m_{\eta_t} \phi_{\eta_t}^2 - \frac{1}{4} g_{gg\eta_t} \phi_{\eta_t} \phi_{\eta_t} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} - i g_{tt\eta_t} \phi_{\eta_t} \bar{t} \gamma_5 t$$

$$M_{\sigma,\bar{\sigma}} = M\Big(\eta_t \to t(p,\sigma/2) \; \bar{t}(\bar{p},\bar{\sigma}/2)\Big)$$

$$\rho_{\sigma\bar{\sigma};\sigma'\bar{\sigma}'}^{\eta_t} = \frac{M_{\sigma\bar{\sigma}}M_{\sigma'\bar{\sigma}'}^*}{\sum_{\sigma\bar{\sigma}} |M_{\sigma\bar{\sigma}}|^2}$$

\sqrt{s}	$\sigma(\eta_t)$ [pb]	$\sigma(t\bar{t})$ [pb]	Ratio
7 TeV	1.55	172	0.0090
8 TeV	2.19	246	0.0089
13 TeV	6.43	810	0.0079
$14 \mathrm{TeV}$	7.54	954	0.0079

- * Cross section of η_t at 7 and 14 TeV are from [Y. Sumino and H. Yokoya, JHEP2010]
- * Cross section of tt from [M Czakon, P.Fiedler and A.Mitov PRL2013, M.Czakon, A. Ferroglia, D.Heymes, A.Mitov, B.Pecjak, X.Wang, and L.Yang JHEP 2018]

Near Threshold

* Multiple gluon exchange effects are evaluated by using Green's function of the non-relativistic Hamiltonian with Coulomb potential. [V.S.Fadin and V.A.Khoze (JETP1987) (Sov. J. Nucl. Phys1988)]

[Y.Sumino and H.Yokoya, JHEP2010]

Distributions

Cut	$tar{t}$	Toponium	Ratio
Initial	113,000,000	900,000	0.0079
Di-lepton	5,160,000	41,000	0.0079
$p_T, \eta , \Delta R$	1,450,000	10,300	0.0071
$\Delta arphi_{ar\ell\ell'}$	189,000	4,060	0.021
$m_{ar\ell\ell'}$	82,000	2,760	0.033
$m_T(ar\ell\ell' bar b; u_\ellar u_{\ell'})$	43,300	2,460	0.057
$t\bar{t}$ kinematical fit	21,700	1,420	0.066

kinematical reconstruction of t and T

t and \overline{t} can be reconstructed since the t and \overline{t} momentum p in the $t\overline{t}$ rest frame is small (\lesssim 20 GeV). By assuming $\vec{p}_t{}^T = \vec{p}_t{}^T$ for the selected events, we can reconstruct t and \overline{t} .

|yt-yt| should also be small for the toponium events.

• Toponium contribution can enhance the cross section by 10% near $|\Delta y|$ =0.