

A W^{\pm} polarization analyzer from Deep Neural Networks

Taegyun Kim
Research Advisor: Dr. Adam Martin
Department of Physics, University of Notre Dame

arXiv:2102.05124

Introduction

Where are we now?

https://project-hl-lhc-industry.web.cern.ch/content/project-schedule

- Entering HL-LHC: bring out small number of event signals
- Precision testing to find potential BSM signatures
- This research is about building a tool and show possibility

Theoretical Motivation

Massive vector boson final states

$$pp \to W^{\pm}W^{\mp}$$

$$pp \to W^{\pm}Z$$

$$pp \to ZZ$$

- Indirect approach of checking SM: polarization searches
 - Longitudinal vs. Transverse
- SM can predict polarization fraction
- Longitudinal polarization is sensitive to EWSB
- Some SMEFT operators can affect longitudinal fraction of a process

W polarization

Decay of W

- There is a limitation in leptonically decaying W
- ullet Since W only interacts to the left handed particles, each polarization has distinct angular distribution
- Due to the deviation, it is possible to measure polarization fraction for diboson final states
- Large overlap in parton level distribution may suppress even by event tagging

Boosted W Jet

Decay of W

- Quark becomes QCD jet
- Due to the boost, collimation of the jet deduces the angular distribution signature
- Possible subjet signature
- After boost $\theta^* \to \text{opening angle (sensitive to pT)}$
- At extreme high p_T^{W} , subjet signature can disappear

Machine Learning Motivation

Machine Learning in HEP

- The current most frequently used machine learning algorithm: Boosted Decision Tree (BDT) and Neural Network (NN)
- Major usage
 - Classification : PID, event identification

Our interest

- Regression : predict particle energy
- Recent researches on: quark vs. gluon, QCD vs. top, W vs. QCD

ML(NN) technique to distinguish hadronic W's polarization to test on $W^\pm Z$ final state

Jet as an Image from Collider

Adjust for HEP using jet image

L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, "Jet-images – deep learning edition,"

- In collider, images are created from outgoing particles
- Particles are plotted on pixelized $\eta-\phi$ plane and their color is determined from p_T

Convolutional Neural Network (CNN)

Image recognition

- Ordinary CNN structure : Convolution Flatten Dense
- The network is trained with simulated events (MadGraph + Pythia + Delphes) of boosted longitudinal and transverse W's respectively for tagging purposes
- Depending on p_T^W , images are separated into 2 bins: [200,300] and [400,500] since for fat jet, $\Delta R \approx \frac{2m_W}{r^W}$

Testing on SM

Longitudinal fraction (f_L)

- Checking distribution can tell us how good the separation between two polarization
- Inhibits potential event by event tagging because of large overlap

- In order to apply for testing, we measure f_L of randomly selected events
- Test on WZ final state

SM

p_T range	$\sigma(pp \to W^{\pm}(jj)Z(\ell\ell))$ (fb)	truth $\sigma_L/\sigma_{ m tot}$	predicted f_L
$200\mathrm{GeV} \leq p_T \leq 300\mathrm{GeV}$	6.67	0.265	0.259 ± 0.013
$400\mathrm{GeV} \leq p_T \leq 500\mathrm{GeV}$	0.35	0.304	0.300 ± 0.033

SMEFT in Diboson Final States

SMEFT intro

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{D>4}^{\inf} \frac{1}{\Lambda^{D-4}} c_j^{(D)} \mathcal{O}_j^{(D)}$$

- SMEFT extends the SM Lagrangian by gauge invariant higher dim (D>4) operators
- ullet We will investigate boosted W cases

Relevant operators (SILH) for diboson final states

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a}$$

$$\mathcal{O}_{B} = \left(H^{\dagger} \sigma^{a} \overrightarrow{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

Longitudinal

$$\mathcal{O}_{2W} = -\frac{1}{2}D^{\mu}W^{a}_{\mu\nu}D_{\rho}W^{a\rho\nu}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$$

Transverse

 $\mathcal{O}_{HW} = ig \left(D^{\mu}H\right)^{\dagger} \sigma^{a} \left(D^{\nu}H\right) W_{\mu\nu}^{a}$

$$\mathcal{O}_{HW} = ig' (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$$

Da Liu, Lian-Tao Wang [arXiv: 1804.08688v1]

Possible Scenarios with SMEFT

SM

p_T range	$\sigma(pp \to W^{\pm}(jj)Z(\ell\ell))$ (fb)	truth $\sigma_L/\sigma_{ m tot}$	predicted f_L
$200\text{GeV} \leq p_T \leq 300\text{GeV}$	6.67	0.265	0.259 ± 0.013
$400\mathrm{GeV} \leq p_T \leq 500\mathrm{GeV}$	0.35	0.304	0.300 ± 0.033

1. Shift longitudinal fraction with cross section shift

	p_T range	$\sigma(pp \to W^{\pm}Z)$ (fb)	truth σ_L/σ_{tot}	predicted f_L
0	$200\mathrm{GeV} \le p_T \le 300\mathrm{GeV}$	6.93	0.311	0.297 ± 0.010
O_W	$400\mathrm{GeV} \le p_T \le 500\mathrm{GeV}$	0.42	0.439	0.391 ± 0.033
0	$200\mathrm{GeV} \le p_T \le 300\mathrm{GeV}$	6.58	0.258	0.254 ± 0.011
O_{3W}	$400\mathrm{GeV} \le p_T \le 500\mathrm{GeV}$	0.50	0.198	0.181 ± 0.043

2. Shift longitudinal fraction without cross section shift

$$SM + \mathcal{O}_W + \mathcal{O}_{3W}$$

p_T range	$\sigma(pp \to W^{\pm}Z)$ (fb)	truth σ_L/σ_{tot}	predicted f_L
$200 \text{ GeV} \le p_T \le 300 \text{ GeV}$	6.68	0.202	0.207 ± 0.011
$400 \text{ GeV} \le p_T \le 400 \text{ GeV}$	0.34	0.285	0.282 ± 0.044

Conclusion/Discussion

- Simple CNN can be used to tag W^\pm polarization though event by event tagging is suppressed
- Ensemble analysis using network's output average values can help to predict f_L
- Network prediction can catch small f_L deviations originated from dim 6 operators
- If cross section changes, polarization measurement can clear out degeneracies between EFT operators
- Possible applicability on Z jets
- Potential limits
 - W^{\pm} vs. Z vs. QCD is not perfectly separable
 - Cuts that can cause polarization interference

Thank you

References

- (1) Aaboud, M., Aad, G., Abbott, B., Abdinov, O. et al. (2019). Measurement of $W^{\pm}Z$ production cross sections and gauge boson polarization in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector. The European Physical Journal C, 79(6).
- (2) D. Liu and L.-T. Wang, "Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs," Physical Review D 99 (Mar, 2019). http://dx.doi.org/10.1103/PhysRevD.99.055001.
- (3) Carleo, Giuseppe et al. "Machine learning and the physical sciences". Reviews of Modern Physics 91. 4(2019).
- (4) Stirling, W. J. et al. "Electroweak gauge boson polarisation at the LHC". Journal of High Energy Physics 2012. 7(2012).
- (5) "scikit-hep/pyjet: 1.6.0 (version 1.6.0),"

Backup slides

Training Quality

Distribution check

- Checking distribution can tell us how good the separation between Logi and trans is.
- Inhibits potential event by event tagging since accuracy is ~ 60%
- Ensemble distribution checking to find longitudinal fraction (f_I)

Simpler Method

Network output average method

- Template fitting method depends on finding "sweet spot" for f_L
 - number of bins
 - find minimum $\chi^2(f_L)$
- Simplify by treating output distribution as probability distribution

$$\int x dx \left(D_u(x) = f_L D_L(x) + (1 - f_L) D_T(x) \right)$$

$$\left\langle x_u \right\rangle = f_L \left\langle x_L \right\rangle + (1 - f_L) \left\langle x_T \right\rangle$$

$$f_L = \frac{\left\langle x_u \right\rangle - \left\langle x_T \right\rangle}{\left\langle x_L \right\rangle - \left\langle x_T \right\rangle}$$

Confirmed that both yield the same result

Jet Images

Network friendly form

https://github.com/scikit-hep/pyjet

Bring out subjet signature

- 1. Identify jet with clustering algorithm
- 2. Check if clustered jet lies under p_T bin range
- 3. Select jets with correct angular position
- 4. Recluster to identify subjets

Jet Images

Network friendly form

Reduce image discrepancies by putting into consistent orientation

- 1. Translate to centralize the highest p_T subjet
- 2. Rotate so that the second highest p_T subjet below the highest
- 3. Reflect
- 4. Pixelize
- 5. Normalize

Training Quality

Distribution check

- Checking distribution can tell us how good the separation between two polarization
- Inhibits potential event by event tagging because of large overlap
 - Putting decision threshold would contain large contamination
- Ensemble distribution checking to find longitudinal fraction (f_I)

Kinematic Cut Effect

W rest frame
$$\frac{1}{\sigma}\frac{d\sigma}{d\mathrm{cos}\theta^*} = \frac{3}{8}(1-\mathrm{cos}\theta^*)^2f_L + \frac{3}{8}(1+\mathrm{cos}\theta^*)^2f_R + \frac{3}{4}\mathrm{sin}^2\theta^*f_0,$$

$$\begin{split} \frac{1}{\sigma} \frac{d\sigma}{d \mathrm{cos} \theta^* d \phi^*} &= \frac{3}{16\pi} [(1 + \mathrm{cos}^2 \theta^*) + A_0 \frac{1}{2} (1 - 3 \mathrm{cos}^2 \theta^*) + A_1 \mathrm{sin} 2\theta^* \mathrm{cos} \phi^* \\ &+ A_2 \frac{1}{2} \mathrm{sin}^2 \theta^* \mathrm{cos} 2\phi^* + A_3 \mathrm{sin} \theta^* \mathrm{cos} \phi^* + A_4 \mathrm{cos} \theta^*], \end{split}$$

• Integrating over ϕ^* will give the same result but kinematic cut can change

Kinematic Cut Effect

Kinematic Cut Effect

Figure 9: Normalised azimuthal angle distributions for a set of different selection cuts imposed on final-state leptons and jets for $W^+ + 1$ jet production at 7 TeV.

W vs. Z

Jet charge

PhysRevD.101.053001

Additional observable :
$$\mathcal{Q}_{\kappa} = \frac{1}{(p_{T,J})^{\kappa}} \sum_{i \in J} q_i \times (p_T^i)^{\kappa}$$

- Depending on κ , separation may change.
 - Need to find optimal value of κ
- Input is pT and Q_K depth=2 image

Preparing Samples

Training / Validation

Longitudinal
$$p\,p o \phi o W^\pm\,W^\mp$$
 Created with heavy Higgs

Transverse
$$pp o W^{\pm}j$$

- MadGraph + Pythia + Delphes
- We separate into p_T bins of W jet: [200,300] and [400,500]
- To make sure the quality of sample, we plotted W decay in parton level

Why asymmetric?

[arXiv: 1204.6427v1]

25

Analysis

Template fit method

- Consider each pure polarization histogram as "template" that can be applied to the unknown sample
- Fit quality is determined by χ^2 distance test

$$\chi^{2}(f_{L}) = \sum_{i=1}^{B} \frac{(O_{i} - N_{s}(f_{L}L_{i} + (1 - f_{L})T_{i}))^{2}}{N_{s}(f_{L}L_{i} + (1 - f_{L})T_{i})}$$

Test on Unknown Samples

SM testing using average method

$$pp \to W^{\pm}Z$$

p_T range	truth σ_L/σ_{tot}	predicted f_L
[200,300]	0.265	0.259 ± ?
[400,500]	0.304	0.300 ± ?

- Output average method can predict well for both p_T bins
- Estimate error on our prediction can tell us the precision
- Truth value is calculated from MadGraph

Uncertainty

Small experiments

- From large test set, we randomly select subset (N number of events) to obtain f_L
- N is determined from expected number of events at particular luminosity
- At current LHC luminosity ~ 2000 events at low p_T and 200 events at high p_T
- At High Lumi LHC ~ 20k events at low p_T and 2k events at high p_T
- By iterating the process, we can obtain average value with standard deviation

	300 fb ⁻¹	3000 fb ⁻¹
[200,300]	0.044	0.010
[400,500]	0.130	0.033

Experimental Results

ATLAS result

ATLAS Result (36fb^{-1})

	f_0				
	Data	Powheg+Pythia		MATRIX	
W^+ in W^+Z	0.26 ± 0.08	0.233 ±	0.004	0.2448 ±	0.0010
W^- in W^-Z	0.32 ± 0.09	$0.245 \pm$	0.005	$0.2651 \pm$	0.0015
W^{\pm} in $W^{\pm}Z$	0.26 ± 0.06	$0.2376 \pm$	0.0031	$0.2506 \pm$	0.0006
Z in W^+Z	0.27 ± 0.05	$0.225 \pm$	0.004	$0.2401 \pm$	0.0014
Z in W^-Z	0.21 ± 0.06	$0.235 \pm$	0.005	$0.2389 \pm$	0.0015
Z in $W^{\pm}Z$	0.24 ± 0.04	$0.2294 \pm$	0.0033	$0.2398 \pm$	0.0014

ATLAS Collaboration [arXiv:1902.05759]

- 1. Previous attempts from ATLAS collaboration to measure polarization with leptonic final states
 - Leptonic final state: small branching ratio
 - Complication in ν reconstruction
- 2. If we can use hadronic W, we gain more statistics but need to deal with hadronic jets