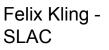
Tuning Pythia for Forward Physics

Felix Kling - SLAC

Holger Schulz - Durham University

Max Fieg - UC Irvine

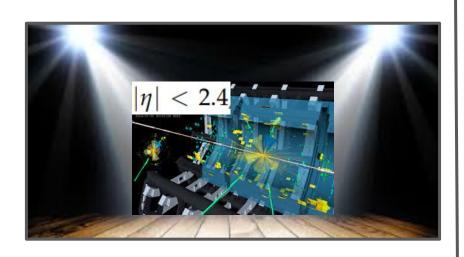


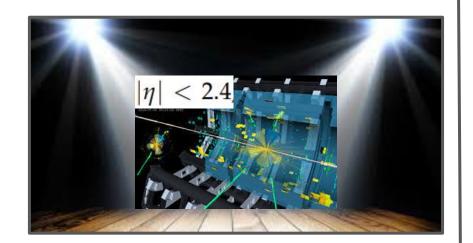
mfieg at uci dot edu

Tuning Pythia for Forward Physics

Holger Schulz niversity

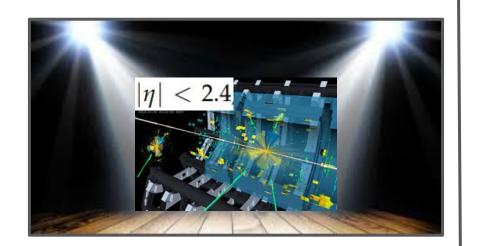
Tomorrow 4:30 PM EDT Forward Physics Facility




BSM IX

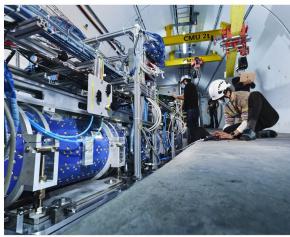
Max Fieg - UC Irvine

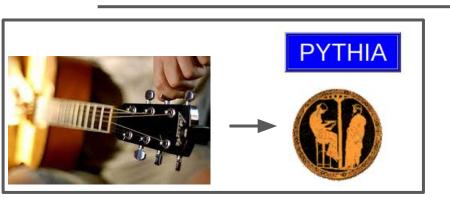
mfieg at uci dot edu

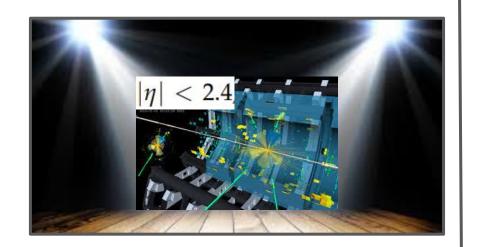

LS2 Report: FASER is born

FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

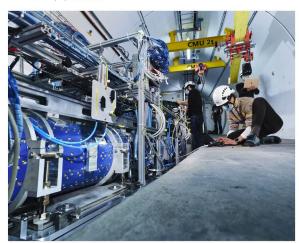

The final elements of FASER were put into place this month. (Image: CERN)

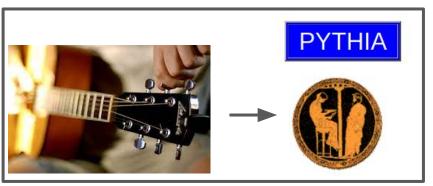

LS2 Report: FASER is born


FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

The final elements of FASER were put into place this month. (Image: CERN)




LS2 Report: FASER is born

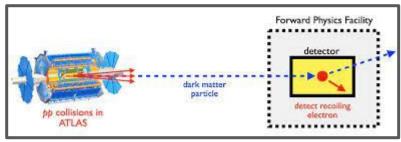
FASER, the Forward Search Experiment, has been installed in the LHC tunnel during Long Shutdown 2. It is currently being tested and will start taking data next year

24 MARCH, 2021 | By Anaïs Schaeffer

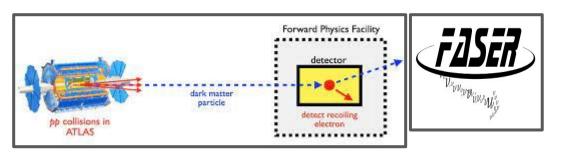
The final elements of FASER were put into place this month. (Image: CERN)

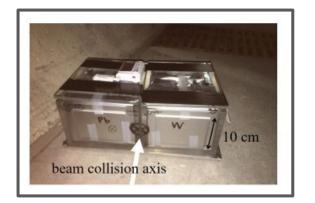
"If you are the 100th person to look under a rock, you are unlikely to find anything...

...but if you are using a new tool, or find a rock that's been left unturned, you don't have to be smart to find something"

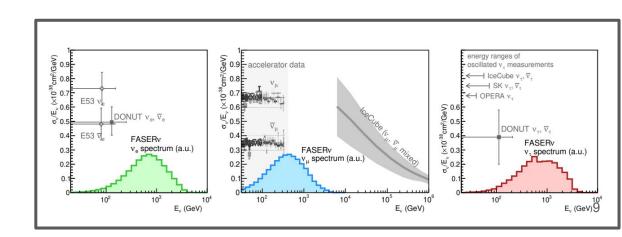

Dr. Steven
Chu 6

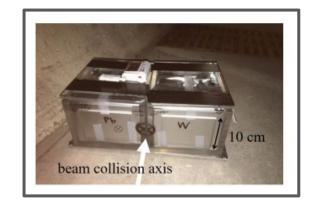
Main Questions

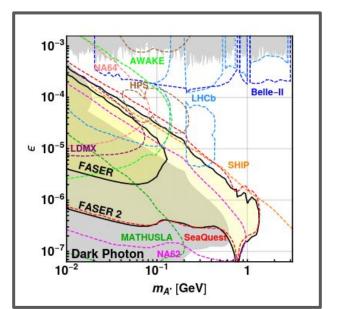

1. Can we tune Pythia for forward experiments?


2. Which experiments can we hope to tune to?

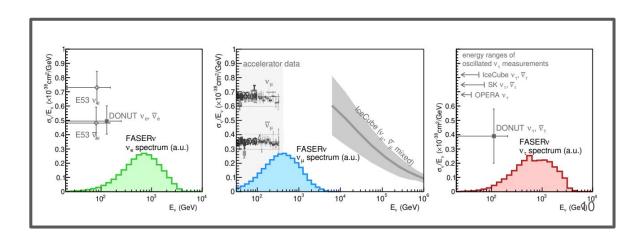
3. How can we estimate the uncertainties in our tune?




High Energy Physics - Experiment


[Submitted on 13 May 2021]

First neutrino interaction candidates at the LHC



High Energy Physics - Experiment

[Submitted on 13 May 2021]

First neutrino interaction candidates at the LHC

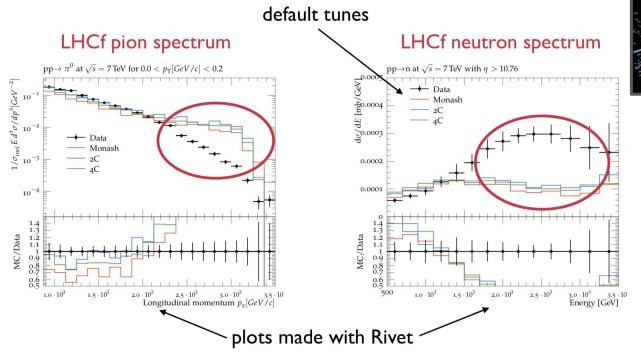
IV. FASER Reach for Dark Vectors

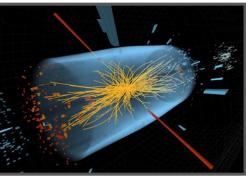
- A. Benchmark V1: Dark Photons
- B. Benchmark V2: B L Gauge Bosons
- C. Benchmark V3: $L_i L_j$ Gauge Bosons
- V. FASER Reach for Dark Scalars
 - A. Benchmark S1: Dark Higgs Bosons
 - B. Benchmark S2: Dark Higgs Bosons with Large Trilinear Couplings
- VI. FASER Reach for Heavy Neutral Leptons
 - A. Benchmarks F1, F2, F3: HNLs Coupled to e, μ, τ
- VII. FASER Reach for Axion-Like Particles
 - A. Benchmark A1: Photon Dominance
 - B. Benchmark A2: Fermion Dominance
 - C. Benchmark A3: Gluon Dominance
- III. FASER Reach for Dark Pseudoscalars
 - A. Benchmark P1: Pseudoscalar with Yukawa-like Couplings

https://arxiv.org/pdf/1811.12522.pdf

Probing PDFs via Neutrino Scattering with FASER ν

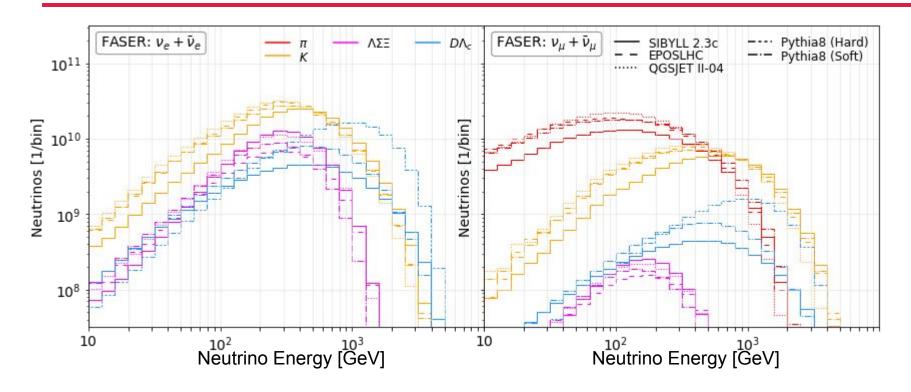
https://indico.fnal.gov/event/48868/contributions/213502/attachments/142718/180250/Strange_PDFs_Snowmass_21.pdf


Detecting Dark Matter with Far-Forward Emulsion and Liquid Argon Detectors at the LHC


Brian Batell,^{1,*} Jonathan L. Feng,^{2,†} and Sebastian Trojanowski^{3,4,5,‡}

https://arxiv.org/pdf/2101.10338.pdf

Main Problem


Usual Pythia tunes don't described LHCf data
 * other generators aren't that great either ...

Parameter	Def.
SigmaDiffractive:maxXB	65
SigmaDiffractive:maxAX	65
SigmaDiffractive:maxXX	65
SigmaDiffractive:maxAXB	3.0
SigmaDiffractive:mMin	0.28
SigmaDiffractive:lowMEnhance	2.0
SigmaDiffractive:mResMax	1.062
SigmaDiffractive:SaSepsilon	0.0
StringPT:sigma	0.335
Diffraction:mMinPert	10.
Diffraction:mWidthPert	10.
Diffraction:probMaxPert	1.0
Diffraction:pickQuarkNorm	5.0
Diffraction:pickQuarkPower	1.0
Diffraction:primKTwidth	0.5
Diffraction:largeMassSuppress	4.0
Diffraction:sigmaRefPomP	10.
Diffraction:mRefPomP	100
Diffraction:mPowPomP	0.0
SigmaDiffractive:PomFlux	1.0
SigmaDiffractive:PomFluxEpsilon	0.085
SigmaDiffractive:PomFluxAlphaPrime	0.25

Importance for Forward Neutrino Fluxes

Most neutrinos come from pion / kaon decays inside the LHC's beam pipe.

→ Neutrino spectrum sensitive to forward pion / kaon production.

Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

Tuning Pipeline

PYTHIA

Generate Events with sets of tuning parameters

Tuning Pipeline

PYTHIA

Generate Events with sets of tuning parameters

 ${
m YODA-Yet\ more\ Objects\ for\ Data\ Analysis}$

small, mean and full of Jedi magic

Rivet — the particle-physics MC analysis toolkit

Combine experimental analyses with Pythia simulations

Tuning Pipeline

PYTHIA

Generate Events with sets of tuning parameters

YODA — Yet more Objects for Data Analysis

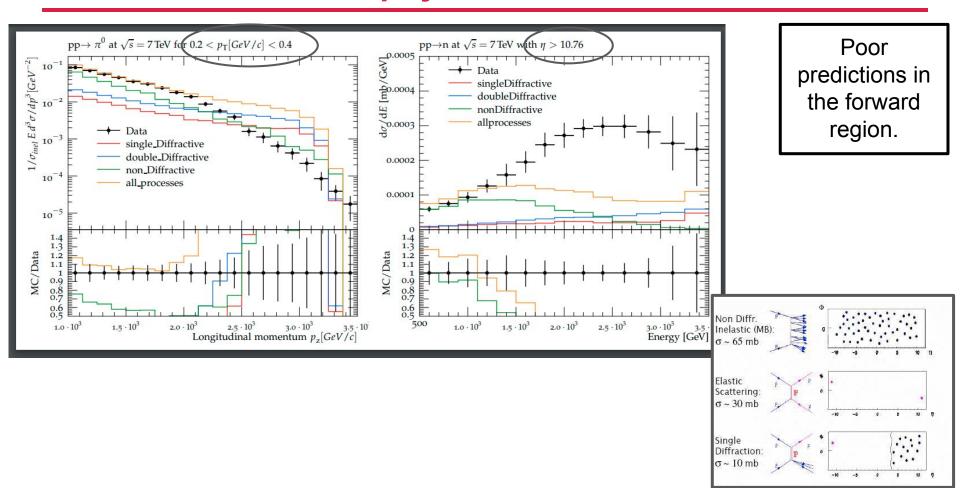
small, mean and full of Jedi magic

Rivet — the particle-physics MC analysis toolkit

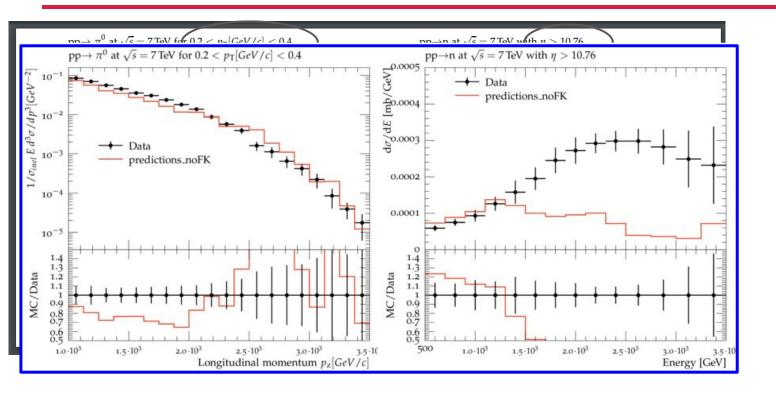
Combine experimental analyses with Pythia simulations

pyapprentice 1.0.6

Predict Pythia response to tuning parameters and fit to experimental data

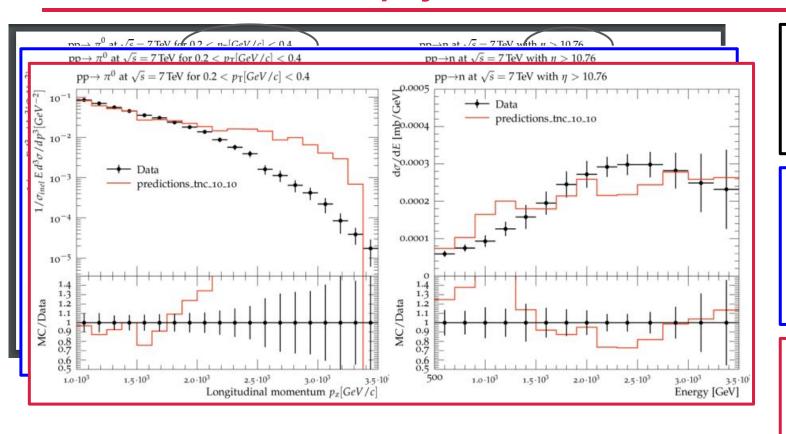

Main Questions

1. Can we tune Pythia for forward experiments?


2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

How much forward physics data can we fit at once?


How much forward physics data can we fit at once?

Poor predictions in the forward region.

An improvement, but some analyses are problematic

How much forward physics data can we fit at once?

Poor predictions in the forward region.

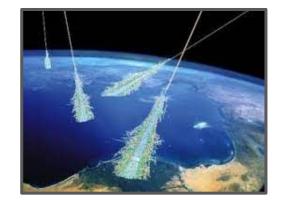
An improvement, but some analyses are problematic

Problematic analyses *can* be generated by Pythia

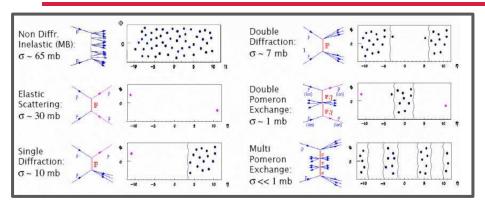
Main Questions

1. Can we tune Pythia for forward experiments?

2. Which experiments can we hope to tune to?


3. How can we estimate the uncertainties in our tune?

Forward Experiments


LHCf $(\eta > 8.81)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
forward π^0 or γ	7	V	[1]	LHCF_2012_I111547	
	2.76, 7	V	[2]	LHCF_2016_I138587	
	13		[3]	LHCF_2018_I151878	
forward γ (diffractive)	13	_	[4]	_	
forward neutrons	7	$\sqrt{}$	[5]	LHCF_2015_I135190	
	13	\vee	[6]	LHCF_2018_I169200	
	13	_	[7]		

CASTOR $(5.2 < \eta < 6.6)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
forward E	13	√	[14]	CMS_2017_I1511284	
forward E vs central N_{ch}	0.9, 2.76, 7	V	[15]	CMS_2013_I1218372	
	13	-	[16]	CMS_2019_I1747892 ⁽ 1	
$dE/d\eta$	13	_	[17]	CMS 2018 I1708620	

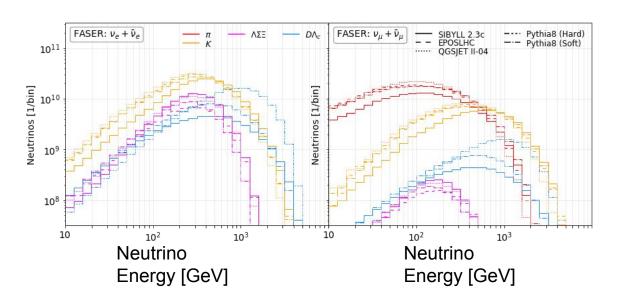
TOTEM (L2) $(5.3 < \eta < 6.5)$					
Analysis	$\sqrt{s} [\text{TeV}]$	HD	Refs.	RIVET	
$dN_{ m ch}/d\eta$	7		[10]	TOTEM_2012_I1115294	
FE 98. 903	8		[11]	TOTEM_2014_I1328627	
	8		[12]	CMSTOTEM_2014_I1294140	
σ_{DD}	7		[13]		

Analyses Targeting Diffractive Processes

ATLAS $(\eta < 5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
MB: dN_{ch} , η and pT	0.9, 2.36, 7	\checkmark	[22]	ATLAS_2010_S8918562	
1751VC Rd 1855	8	\checkmark	[23]	ATLAS_2016_I1426695	
	13	\checkmark	[24]	ATLAS_2016_I1419652	
MB: $\sum E_T$	7		[25]	ATLAS_2012_I1183818	
$\sigma_{ m inel}$	7	\checkmark	[26]	ATLAS_2011_I894867	
VERMINE	13		[27]	ATLAS_2016_I1468167	
η gap	7	\checkmark	[28]	ATLAS_2012_I1084540	
	7	V	[29]		
ALFA: tagged p SD	8	V	[30]	ATLAS_2019_I1762584 ⁽¹⁾	
(unpublished)	13		[31]		

ALICE $(\eta < 5)$					
Analysis	$\sqrt{s} [\text{TeV}]$	HD	Refs.	RIVET	
$\sigma_{SD}, \sigma_{DD}, \sigma_{inel}$	7	\vee	[18]	ALICE_2012_I1181770	
incl. photons	0.9, 2.76, 7	\vee	[19]		
$N_{ m ch}$	0.9, 7, 8 TeV	V	[20]	_	
ϕ	2.76 TeV	V	[21]		

CMS $(\eta < 5)$					
Analysis	\sqrt{s} [TeV]	HD	Refs.	RIVET	
η gap	7	_	[32]	CMS_2015_I1356998	
TOTEM SD σ_{2j} w. tagged p	8		[33]		
Strange Production	0.9, 7	V	[34]	CMS_2011_S8978280	
	13		[35]	CMS_2017_I1608166 ⁽ 1	
σ_{inel} (incl. SD enhanced)	13	V	[36]	CMS_2018_I1653948	
diffractive (unpublished)	7		[37]		
THE SECOND STREET CONTRACTOR STREET CONTRACTOR STREET	8	_	[38]		
	13	_	[39]		

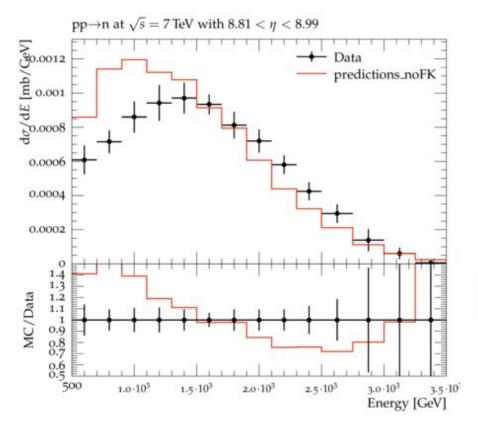

Main Questions

1. Can we tune Pythia for forward experiments?

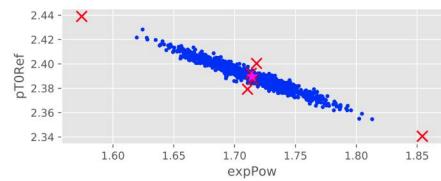
2. Which experiments can we hope to tune to?

3. How can we estimate the uncertainties in our tune?

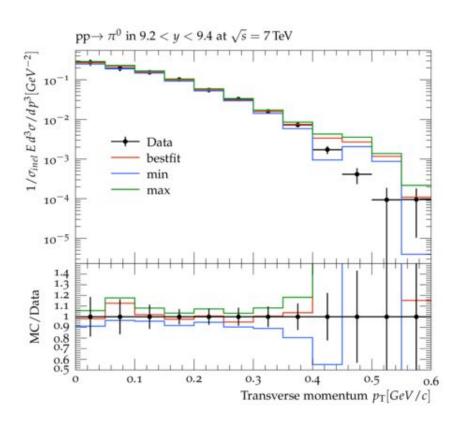
Estimating Uncertainty



 Naively, one could take the error band defined by multiple generators' predictions


This is problematic: uncertainty strongly depends on the weakest generator

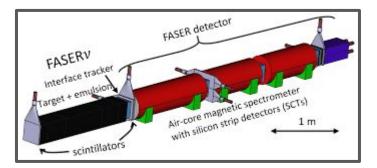
Want something more robust

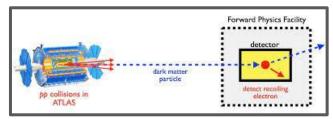

Estimating Uncertainty - Replica Tunes

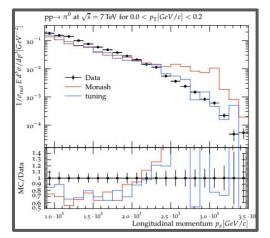
- 1. Create replica datasets
- 2. Create replica *tunes* from these
- 3. Use these replica tunes to explore parameter space effectively

Estimating Uncertainty - Replica Tunes

Preliminary error bars


Main Questions


1. Can we tune Pythia for forward experiments? V



2. Which experiments can (or should) we tune to? Are there other experiments we should focus on? Are there other experiments we are ignoring?

3. How can we estimate the uncertainties in our tune?

IV. FASER Reach for Dark Vectors

A. Benchmark V1: Dark Photons

B. Benchmark V2: B - L Gauge Bosons

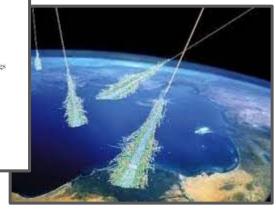
C. Benchmark V3: $L_i - L_j$ Gauge Bosons

V. FASER Reach for Dark Scalars

A. Benchmark S1: Dark Higgs Bosons

B. Benchmark S2: Dark Higgs Bosons with Large Trilinear Couplings

VI. FASER Reach for Heavy Neutral Leptons A. Benchmarks F1, F2, F3: HNLs Coupled to e, μ, τ


VII. FASER Reach for Axion-Like Particles

A. Benchmark A1: Photon Dominance

B. Benchmark A2: Fermion Dominance C. Benchmark A3: Gluon Dominance

III. FASER Reach for Dark Pseudoscalars

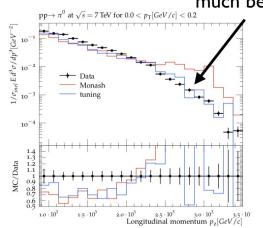
A. Benchmark P1: Pseudoscalar with Yukawa-like Couplings

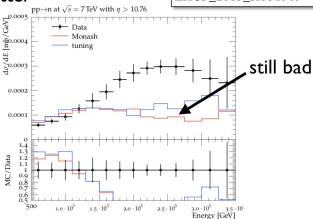
Forward Physics (w/ tuned Pythia)

Dr. Steven Chu

Thank You!

References


- 1. Faser_nu Technical Proposal: https://arxiv.org/abs/1812.09139
- 2. Faser Physics Reach for LLP's: https://arxiv.org/abs/1811.12522
- 3. FLARE https://arxiv.org/pdf/2101.10338.pdf
- 4. Strange PDF's from FASER: https://indico.fnal.gov/event/48868/contributions/213502/attachments/142718/180250/Strange_P DFs_Snowmass_21.pdf
- Rivet https://rivet.hepforge.org/
- 6. Apprentice https://iamholger.gitbook.io/apprentice/installation
- Pythia http://home.thep.lu.se/Pythia/


Backup

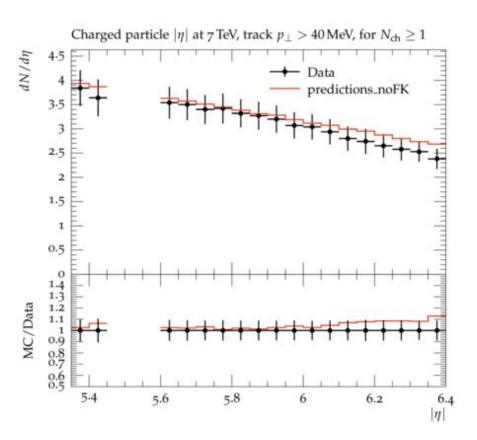
First Results

- we tested 76 Pythia8 parameters, plotted key distribution, and identified 9 relevant parameters
- We tuned them to the LHCf pion and neutron analyses
- First results look promising

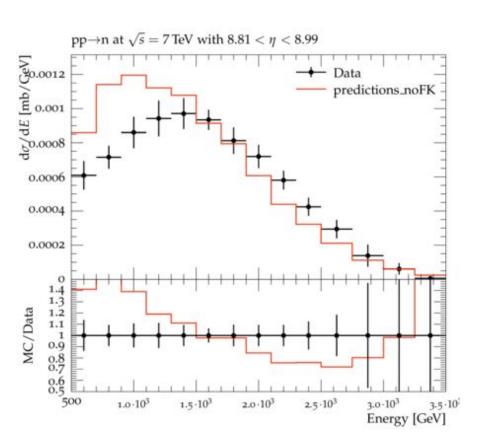
much better

Parameters:

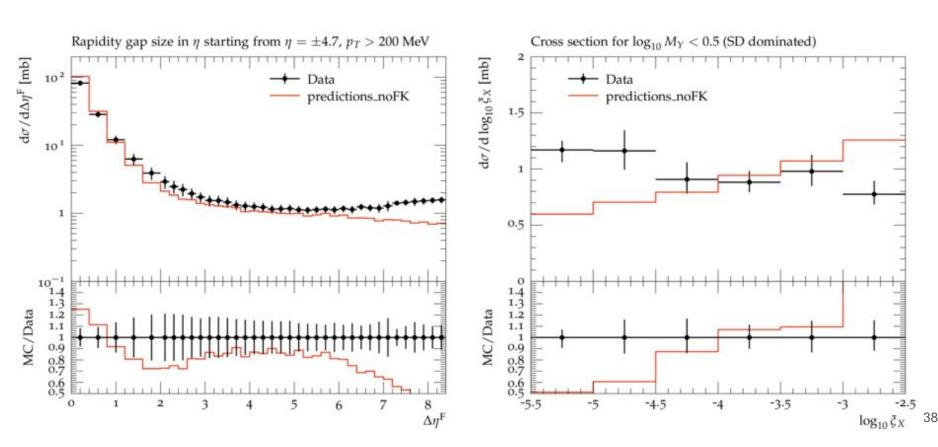
SigmaDiffractive:mMin SigmaDiffractive:lowMEnhance SigmaDiffractive:maxAX SigmaDiffractive:maxXX SigmaDiffractive:mResMax SigmaDiffractive:maxXB SigmaDiffractive:maxAXB SigmaDiffractive:SaSepsilon StringPT:sigma

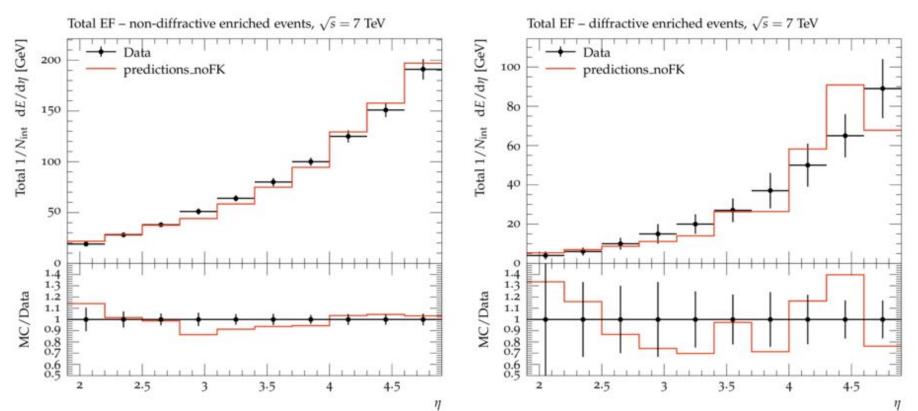

Analyses:

LHCF 2016 I1385877 LHCF_2015_I1351909


Tuning Parameters

Parameter	Def.
SigmaDiffractive:maxXB	65
SigmaDiffractive:maxAX	65
SigmaDiffractive:maxXX	65
SigmaDiffractive:maxAXB	3.0
SigmaDiffractive:mMin	0.28
SigmaDiffractive:lowMEnhance	2.0
SigmaDiffractive:mResMax	1.062
SigmaDiffractive:SaSepsilon	0.0
StringPT:sigma	0.335
Diffraction:mMinPert	10.
Diffraction:mWidthPert	10.
Diffraction:probMaxPert	1.0
Diffraction:pickQuarkNorm	5.0
Diffraction:pickQuarkPower	1.0
Diffraction:primKTwidth	0.5
Diffraction:largeMassSuppress	4.0
Diffraction:sigmaRefPomP	10.
Diffraction:mRefPomP	100
Diffraction:mPowPomP	0.0
SigmaDiffractive:PomFlux	1.0
SigmaDiffractive:PomFluxEpsilon	0.085
SigmaDiffractive:PomFluxAlphaPrime	0.25


TOTEM


LHCf Neutrons

CMS

LHCb

