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The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimen-
tal analyses. Over time, physicists have derived suitable kinematic variables for many typical event
topologies in collider physics. Here we introduce a deep learning technique to design good event
variables, which are sensitive over a wide range of values for the unknown model parameters. We
demonstrate that the neural networks trained with our technique on some simple event topologies
are able to reproduce standard event variables like invariant mass, transverse mass, and strans-
verse mass. The method is automatable, completely general, and can be used to derive sensitive,
previously unknown, event variables for other, more complex event topologies.

Introduction. Data in collider physics is very high-
dimensional, which brings a number of challenges for
the analysis, encapsulated in “the curse of dimensional-
ity” [1]. Mapping the raw data to reconstructed objects
involves initial dimensionality reduction in several stages,
including track reconstruction, calorimeter clustering, jet
reconstruction, etc. Subsequently, the kinematics of the
reconstructed objects is used to define suitable analysis
variables, adapted to the specific channel and targeted
event topology. Each such step is essentially a human-
engineered feature-extraction process from complicated
data to a handful of physically meaningful quantities.
While some information loss is unavoidable, physics prin-
ciples and symmetries help keep it to a minimum.

In this letter, we shall focus on the last stage of this
dimensionality reduction chain, namely, the optimal con-
struction of kinematic variables, which is essential to ex-
pedite the discovery of new physics and/or to improve the
precision of parameter measurements. By now, the ex-
perimentalist’s toolbox contains a large number of kine-
matic variables, which have been thoroughly tested in
analyses with real data (see [2–5] for reviews). The latest
important addition to this set are the so-called “singu-
larity variables” [6–10], which are applicable to missing
energy events — the harbingers of dark matter produc-
tion at colliders. In the machine learning era, a myriad of
algorithms have been invented or adopted to tackle var-
ious tasks that arise in the analysis of collider data, e.g.,
signal–background discrimination (see [11] for a contin-
uously updated complete review of the literature). Un-
der the hood, the machines trained in these techniques
could learn to construct useful features from the low-level
event description, because they are relevant to the task

at hand. But it is difficult to interpret what exactly the
machines have learned in the process [12, 13]. Further-
more, it is rarely studied whether the human-engineered
features are indeed the best event variables for certain
purposes, and whether machines can outperform theo-
rists at constructing event variables.

These two issues, explainability and optimality, are
precisely the two questions which we shall address in this
letter. We shall introduce a new technique for training
neural networks to directly output useful features or event
variables (which offer sensitivity over a range of unknown
parameter values). This allows for explainability of the
machine’s output by comparison against known features
in the data. At the same time, it is important to verify
that the variables obtained using our technique are in-
deed the optimal choice, and we will test this by directly
comparing them against the human-engineered variables
that are known to be optimal for their respective event
topologies. Once we have validated our training proce-
dure in this way, we could extend it to more complex
event topologies and derive novel kinematic variables in
interesting and difficult scenarios.

Understanding how and what a neural network (NN)
learns is a difficult task. Here we shall consider relatively
simple physics examples that are nevertheless highly non-
trivial from a machine learning point of view: (1) visi-
ble two-body decay (to two visible daughter particles);
(2) semi-invisible two-body decay (to one visible and one
invisible daughter particle); (3) semi-invisible two-body
decays of pair-produced particles. It is known that the
relevant variables in those situations are the invariant
mass m, the transverse mass mT [14, 15] and the strans-
verse mass mT2 [16], respectively. We will demonstrate
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Synthesizing event variables with machine learning
I What are event variables?

Dimensionality reducing transformations. Eg: invariant mass, transverse mass
High-dimensional event description −→ low-dimensional variables

I Why use event variables?
• Curse of dimensionality. Easier to analyze low-dimensional data.
• Sensitive to presence of signal or parameter value over a range of values of
unknown parameters.

• Easier to validate simulation models in low-dimensional dataspace.
I How to model an event variable with a neural network? Easy!

Artificial Event
Variable Network

V : X −→ V
X ...

V (X)...

I How to train such a network? Not straightforward!
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Distinction from other ML approaches

Artificial Event
Variable Network

V : X −→ V
X ...

V (X)...

The goals here are very different from common goals in HEP-ML.
V needs to be “useful” over a range of parameter values.
I V is not a sig-bkg classifier, which typically works for chosen “study point”.
I Parameterized networks map each event onto a function, e.g., X → L(Θ|X).

We’re not doing this.
I We aren’t training V to match or predict some monte-carlo truth.

It’s not about finding the right distance metric from V to a target.
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The beginnings of a training strategy…

Artificial Event
Variable Network

V : X −→ V
X ...

V (X)...

I Goal: Train the network to be useful over a range of parameter values.

I One interpretation of the goal:
• Train the network so that V carries a lot of information about the underlying

unknown parameters Θ.
• Mass variables, for example, carry a lot of information about the underlying mass

parameters—that’s why they are used in measurement of mt, mW , mZ , etc.

I How:
• Come up with a task to be performed using V .
• Train the network to perform the task well.
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Some information theory…
I pΘ ≡ Prior on the unknown parameters Θ

pX|Θ ≡ Dist. of the event X conditional on Θ, V (X) ≡ Event variable
I Mutual information between the event variable V and parameter Θ:

I(V ; Θ) =
∫

dv

∫
dθ p(V,Θ)(v, θ) ln

[
p(V,Θ)(v, θ)
pV (v) pΘ(θ)

]
I I(V ; Θ) is the KL divergence from pV ⊗ pΘ to p(V,Θ). It captures their

distinguishablity.
I Idea: Train V so that the two distributions are highly distinguishable.Our diagram:

p⇥

p⇥ pX|⇥

Event

Variable

Network

V : X �! V Classifier

Network

y : V ⇥ ⌦ �! [0, 1]

y(V,⇥)

V (X)

Artificial event variable V (X)

X

⇥

.

.

.

⇥true

⇥fake

⇥

ytarget = 1

ytarget = 0

Data Generator

Composite
Neural Network

1
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Blueprint of the training strategyOur diagram:
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I Training data: (X, Θ) ∼ pX ⊗ pΘ under class 0; p(X,Θ) under class 1
I Event variable network: Transforms X to V .
I Auxiliary Classifier Network:

Input is (V, Θ) ∼ pV ⊗ pΘ under class 0; p(V,Θ) under class 1.
I Train the composite network as a classifier.

• Auxiliary classifier distinguishes between pV ⊗ pΘ and p(V,Θ).
• Event Variable Networkmakes them highly distinguishable.

(actualizing the idea from the last slide)
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Example 1: Invariant mass

I A → b, c (both massless and visible)
I Θ ≡ mA

I mA is chosen uniformly in the range (100, 500).
I dim(X) = 8; dim(V ) = 1
I We want the event variable to work

even when A is not at rest, and
for different (mB , mC) values

• EA is uniformly sampled from (mA, 1500).
• Direction of A is chosen uniformly at random.

I We sample events from the phasespace, and
train the event variable network.

I The machine ends up learning mbc!

What has the machine learned?

1000 2000 3000

Artificial variable V
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c
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Event variable in action
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Artificial variable V
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Example 2: Transverse mass mT

I A → b(massless, visible), C (invisible)

I Θ ≡ (mA, mC) chosen from an appropriate prior.
I dim(X) = 6; dim(V ) = 1
I Other parameters

• EA is uniformly sampled from (mA, 1500).
• Direction of A is chosen along the ±z-axis.

I The machine ends up learning mT !

What has the machine learned?
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Artificial variable V
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Event variable in action
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Artificial variable V
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Example 3: Stransverse mass mT2

I pp → A1, A2
Ai → bi(massless, visible), Ci(invisible)

I Θ ≡ (mA, mC) chosen from an appropriate prior.
I dim(X) = 10; dim(V ) = 1
I Other parameters

• mpp is sampled from (2mA, 1500).
• Epp is sampled from (mpp, 2500).
• Direction of pp is chosen along the ±z-axis.

I Unlike invariant and tranverse mass, stransverse
mass mT 2 does not have singular features, and
isn’t guaranteed to be optimal for the task.

What has the machine learned?
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Artificial variable V
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Summary and Outlook

Summary:
I We have a technique for training neural networks into being good event

variables.
I The network ends up learning traditional variables like invariant mass, mT , and

mT 2 in the appropriate event topologies.

What’s next?

Now, we can go after previously unknown event variables.
• Event topologies for which the best kinematic variables are yet to be discovered.
• Humans are good at finding the good 1d kinematic event variables. What’s the best

2d or 3d event variable? (excluding obvious cases like two resonant decays)
• Variables that incorporate more physics that just the event kinematics—qcd effects,

parton distribution functions, etc.
• Event variables that take non-traditional attributes as inputs, e.g., b-tag score.
• Explore other notions of “usefulness” of an event variable.
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Event variables vs typical ML approaches

Cons of the event variable approach:
I Dimensionality reduction =⇒ loss of information =⇒ loss of sensitivity.

We’re not going to reach the Cramér–Rao bound with event variables.

Pros of the event variable approach:
I Interpretable, by direct comparison against human-engineered features.
I Works over a range of parameter values

I Trivially generalizable (in the ML sense)
• Variables are derived using phasespace generated events.
• Yet, they are useful in the analysis of real datasets — just need suitable simulations.

I Relatively robust against unknown modeling errors
• Goodness-of-fit tests (only) exist for low-dimensional data.
• Easier to perform meaningful validation of the joint-distribution of low-dim data,

than high-dim data… Control region validation, post-fit goodness-of-fit test, etc.
• Dangerous, unknown modeling errors can be expected to be caught.

Not going after
ultimate sensitivity

We’re creating sensitive,
robust, and reliable blackboxes

Thank You!
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