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The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimen-
tal analyses. Over time, physicists have derived suitable kinematic variables for many typical event
topologies in collider physics. Here we introduce a deep learning technique to design good event
variables, which are sensitive over a wide range of values for the unknown model parameters. We
demonstrate that the neural networks trained with our technique on some simple event topologies
are able to reproduce standard event variables like invariant mass, transverse mass, and strans-
verse mass. The method is automatable, completely general, and can be used to derive sensitive,
previously unknown, event variables for other, more complex event topologies.
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Synthesizing event variables with machine learning

» What are event variables?
Dimensionality reducing transformations. Eg: invariant mass, transverse mass
High-dimensional event description — low-dimensional variables
» Why use event variables?
e Curse of dimensionality. Easier to analyze low-dimensional data.
e Sensitive to presence of signal or parameter value over a range of values of
unknown parameters.
e Easier to validate simulation models in low-dimensional dataspace.

» How to model an event variable with a neural network? Easy!

; Artificial Event
X | Variable Network : V(X)

V. —Y

» How to train such a network? Not straightforward!
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Distinction from other ML approaches

Artificial Event
X | Variable Network : V(X)

N R A %

The goals here are very different from common goals in HEP-ML.
V needs to be “useful” over a range of parameter values.
» V is not a sig-bkg classifier, which typically works for chosen “study point”.

» Parameterized networks map each event onto a function, e.g., X — £(0|X).
We're not doing this.

» We aren’t training V' to match or predict some monte-carlo truth.
It's not about finding the right distance metric from V to a target.

Deep-Learned Event Variables for Collider Phenomenology, arXiv:2105.10126 [hep-ph] Prasanth Shyamsundar 3/11


https://arxiv.org/abs/2105.10126

The beginnings of a training strategy...

—_ 1 Artificial Event
X . | Variable Network V(X))

- 5
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» Goal: Train the network to be over a range of parameter values.

» One interpretation of the goal:
® Train the network so that V' carries a lot of information about the underlying
unknown parameters ©.
® Mass variables, for example, carry a lot of information about the underlying mass
parameters—that’s why they are used in measurement of m;, my,, mz, etc.
» How:

e Come up with a task to be performed using V.
e Train the network to perform the task well.
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Some information theory...

» pe = Prior on the unknown parameters ©
px|e = Dist. of the event X conditional on ©, V(X) = Event variable
» Mutual information between the event variable V and parameter ©:

Hv;e)= /dv/d9 pwe)(v,0) In [p(V@)(U’H)]

pv(v) pe(f)
» I(V;0)is the KL divergence from py- @ pe to p(ye). It captures their
distinguishablity.
» Idea: Train V so that the two distributions are highly distinguishable.
Artificial event variable V(X)
Data Generator X
@ [ s
Pe R B Network
\/} : a2 o) V(X) Classifier
- Network uv,0)
Yo =1 o o |vvxa—p]
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Blueprint of the training strategy

Artificial event variable V(X))

Data Generator X
Event
Oprue P \\' Variable
pe X6 / : Network V(X)
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Network
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o 6 y:VxQ—[0,1]
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Ofake (gt Neural Network

» Training data: (X,0) ~ py @ pe under class 0; p(x o) under class 1
Event variable network: Transforms X to V.
» Auxiliary Classifier Network:
Inputiis (V,©) ~ py @ pe under class 0; p(y,e) under class 1.
» Train the composite network as a classifier.
* Auxiliary classifier distinguishes between py @ pe and p(y o).
® Event Variable Network makes them highly distinguishable.

(actualizing the idea from the last slide)

v
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Example 1: Invariant mass

v

A — b, c (both massless and visible)
> O =mgy

v

v

dim(X) = 8;dim(V) =1

We want the event variable to work
even when A is not at rest, and
for different (mp, m¢) values

® F,isuniformly sampled from (m 4, 1500).
e Direction of A is chosen uniformly at random.

v

v

We sample events from the phasespace, and
train the event variable network.

v

The machine ends up learning my,!

What has the machine learned?

m 4 is chosen uniformly in the range (100, 500).

%107

500

.-"'-.
1000 2000 3
Artificial variable V'

Event variable in action

x10~2

1 ma =200 ma = 320
ma =280 T3 my =400

1000 1500 2000 2500 SUU(;
Atrtificial variable V'
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Example 2: Transverse mass mr
What has the machine learned?
x10~1

2.0
1.5
1.0
> A — b(massless, visible), C(invisible)
0.5
» © = (ma,m¢) chosen from an appropriate prior. ;
. . 0 . 0.0
> dim(X) = 6; dim(V) =1 Arificia varable 1
> Other parameters Event variable in action
® F,isuniformly sampled from (m 4, 1500). =
e Direction of A is chosen along the +z-axis. . e
my = 320: me = 100
» The machine ends up learning m! v

0 200 400
Atrtificial variable V'
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Example 3: Stransverse mass mq»

> pp — A1, Ag
Az’ — bi(massless, visible), Cz‘(invisible)

» © = (ma,m¢) chosen from an appropriate prior.

» dim(X) = 10; dim(V) =1

» Other parameters
® m,, is sampled from (2m 4, 1500).
* E,,issampled from (m,,, 2500).
¢ Direction of pp is chosen along the £z-axis.

» Unlike invariant and tranverse mass, stransverse
mass mry does not have singular features, and
isn’t guaranteed to be optimal for the task.

What has the machine learned?

x 107

250 500 750
Artificial variable V'

Event variable in action

x107*

5.0 T ma = 200;me = 100
ma = 280;me = 100

m = 320;me = 100
TIT0 ma = 400;me = 100

3.0

2.0

1.0

0.0

0 200 100 o
Artificial variable V'
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Summary and Outlook

Summary:

» We have a technique for training neural networks into being good event
variables.

» The network ends up learning traditional variables like invariant mass, m, and
mro in the appropriate event topologies.

What's next?

Now, we can go after previously unknown event variables.

® Event topologies for which the best kinematic variables are yet to be discovered.

e Humans are good at finding the good 1d kinematic event variables. What's the best
2d or 3d event variable? (excluding obvious cases like two resonant decays)

e Variables that incorporate more physics that just the event kinematics—qcd effects,
parton distribution functions, etc.

e Eventvariables that take non-traditional attributes as inputs, e.g., b-tag score.

e Explore other notions of “usefulness” of an event variable.
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vs typical ML approaches

Cons of the event variable approach:

» Dimensionality reduction = loss of information = loss of sensitivity.
We're not going to reach the Cramér-Rao bound with event variables.

Pros of the event variable approach:
Interpretable, by direct comparison against human-engineered features.
Works over a range of parameter values

v

v

v

Trivially generalizable (in the ML sense)

¢ Variables are derived using phasespace generated events.
® Yet, they are useful in the analysis of real datasets — just need suitable simulations.

v

Relatively robust against unknown modeling errors

® Goodness-of-fit tests (only) exist for low-dimensional data.

® Easier to perform meaningful validation of the joint-distribution of low-dim data,
than high-dim data... Control region validation, post-fit goodness-of-fit test, etc.

¢ Dangerous, unknown modeling errors can be expected to be caught.
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vs typical ML approaches

Cons of the event variable approach:
» Dimensionality reduction = loss of information = loss of sensitivity.
We're not going to reach the Cramér-Rao bound with event variables.
Pros of the event variable approach:
Interpretable, by direct comparison against human-engineered features.
Works over a range of parameter values We're creating sensitive,
Trivially generalizable (in the ML sense) robust, and reliable blackboxes

® Variables are derived using phasespace generated events.
® Yet, they are useful in the analysis of real datasets — just need suitable simulations.

v

v

v

v

Relatively robust against unknown modeling errors

® Goodness-of-fit tests (only) exist for low-dimensional data.

® Easier to perform meaningful validation of the joint-distribution of low-dim data,
than high-dim data... Control region validation, post-fit goodness-of-fit test, etc.

* Dangerous, unknown modeling errors can be expected to be caught. Thank You!
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