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INTRODUCTION
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- Explain ML decisions of a jet classifier using expert augmented (XAUG) variables


- General method: provide XAUG inputs to a jet tagging network, apply LRP to network 
and compare results to same network without XAUG vars.

XAUG VARIABLES
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- LRP propagates a prediction backwards through the network, assigning a relevance 
score to each piece of input.

LAYERWISE RELEVANCE PROPAGATION
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4Layer-Wise Relevance Propagation: An Overvie; G. Montavon , et al. (2019) [https://doi.org/10.1007/978-3-030-28954-6_10] 
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- Due to a conservation of relevance,  the backwards propagation process does not alter 
the prediction


- LRP attributes the entirety of the network’s decision to the inputs, which can be 
visualized as a heat map for images
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5iNNvestigate Neural Networks! M. Alber, et al. (2018) [arXiv:1808.04260]
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TOY MODEL
6



- Toy events simulated to mimic particle level events with 1 jet consisting of 20 particles, 
divided evenly between 2 subjets


- Goal is to have a small number of variables capture all the information in the event


- The z and 𝜃 (ΔR) values are sampled from a normal distribution for "signal-like" images 
and from exponential distribution for "background-like" images

TOY MODEL

7



- Architecture based on ImageTop network

2DCNN
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Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques; CMS Collaboration (2020) [arXiv:2004.08262]



- Architecture inspired by DeepAK8 jet tagging algorithm

1DCNN
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TOY 2DCNN RESULTS
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More relevance is given along 
the  axis in the signal images. ϕ



- Mean Normalized 
Relevance


- Find feature with max 
absolute LRP score and 
divide all scores by this 
max value


- For each image, sum 
absolute value of 
normalized pixels to get 
a single number for each 
image


- Average absolute 
relevance scores across 
all events for each 
feature

TOY 2DCNN RESULTS
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- Profile plots show the 
relevances vs the 
corresponding input 
variables


- For some profiles 
relevance appears to 
reflect input distribution, 
but other don’t — 
networks’ decision 
boundaries live in a higher 
dimensional space

TOY 2DCNN RESULTS
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TOY 2DCNN RESULTS
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Darker markers corresponds to 
higher relevance scores. 

Sharp gradient shows decision 
boundary for these variables

Differences in boundary shape 
show how trainings vary



TOY 1DCNN RESULTS
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Most relevant features are same 
as 2DCNN.

More robust “substructure” 
within relevance of the top two 

variables.

Error bars show standard 
deviation of relevance after 

multiple trainings.



PARTICLE SIMULATION
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- Simulated with pythia8, SM ZZ and 
QCD


- AK8 jets from fastjet


- pT > 200 GeV


- mMDT from fastjet-contrib


- , 


- Preprocessing for images: rotation 
and scaling so that lower pT subjet is 
always at (0,-1), and normalize inputs 
w.r.t. jet pT, parity flip

z = 0.1 β = 0

PYTHIA GENERATION
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- Use same network structures as Toy Model, replacing inputs 
with equivalent counterparts.PARTICLE MODEL

17



LRP HEATMAPS
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Signal is given mostly positive 
relevance, primarily along  axis.ϕ

Background is given mostly 
negative relevance, and is more 

dispersed.



2D SCATTER REPRESENTATIONS
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Darker markers correspond to 
higher abs. relevance scores. 

Decision boundaries not as 
clear as toy case.



20

RESULTS 2DCNN



RESULTS 1DCNN

21



22

RESULTS



- Introducing XAUG variables and performing LRP can shed light on network decisions 
and relevant subspaces in the training


- XAUG variables can be used to boost classification performance


- XAUG variables can capture the information of lower level networks entirely, and a set 
of XAUG variables can replace long lists of particle-level information while producing 
comparable network performance


- Use of these techniques together can be used to quantify numerical uncertainty in 
training of DNNs

CONCLUSIONS
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BACKUP
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- Machine Learning (ML) is commonly used for classification of boosted jets


- Convolutional Neural Networks (CNNs) take greyscale jet images as inputs


- A special case of the CNN is a 1-dimensional CNN which takes list-like inputa


- Decision-making process of the networks is not well understood

INTRODUCTION

Fig 1: Greyscale jet image
https://arxiv.org/pdf/1709.04464.pdf 25
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MOTIVATION
- Most ML models behave as black boxes


- Augment the inputs to various types of jet classifying NNs with expert variables 


- Extract classifying information using Layerwise Relevance Propogation (LRP)


- Understand what subset of information from the inputs and expert variables is relevant 
to the NN 
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DNN FORWARD PROPAGATION
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DNN FORWARD PROPAGATION
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DNN FORWARD PROPAGATION
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DNN FORWARD PROPAGATION

Castle
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- Want to ensure that predictions are supported by meaningful patterns in the data.

EXPLAINING THE DECISION

x1

x2

x1

x2

x1

x2

31



- LRP is one technique that can be used to tease out if the networks learned patterns are 
following the intended categorisation.

EXPLAINING THE DECISION
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- LRP-z:


- Redistributes the relevance in proportion to the contributions to the neuron activation.


- Gradient X Input → Noisy

LRP PROPAGATION RULES
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- LRP-𝜖:


- 𝜖 absorbs some relevance for weak and/or contradictory contributions.


- For large 𝜖 only salient explanation factors survive the absorption → Less Noisy

- LRP-𝛼1𝛽0:


- Limiting effect on how large positive and negative relevance can grow → Stable Explanations


- 𝛼(𝛽) controls by how much positive(negative) contributions are favored. 



TOY MODEL
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1. Cut on softdrop mass: keep jets with mSD 50-150 GeV

2. Numerical rescaling


1. Rebin outliers to                         and 

2. Input distributions are then rescaled from 0 to 1: 

PREPROCESSING
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Mass cut + rescaling



- Profiles do not show a clear 
decision boundary, prompting the 
creation higher dimensional plots

PARTICLE MODEL 
PROFILE PLOTS
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RNN
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PARTICLE LIST INPUTS
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