The Standard Model prediction for the muon g-2

Hartmut Wittig

CERN and PRISMA⁺ Cluster of Excellence, Johannes Gutenberg-Universität Mainz

Phenomenology 2021 Symposium University of Pittburgh
25 May 2021

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

The Standard Model and its limits

Highly successful theory, but no explanation for

- dark matter and dark energy
- matter-antimatter asymmetry
- hierarchy among particle masses:

 $m_{\nu_e} \ll m_{\rm Higgs} \ll m_{\rm Planck}$

number of particle generations

Standard Model does not provide a complete description of Nature

Explore the limits of the Standard Model

- search for new particles and forces at high energies
- search for enhancement of rare phenomena
- confront precision measurements with SM predictions

Plenary Session [TUE]

James Mott

"Muon g - 2 and muon physics on Fermilab campus"

Bhupal Dev

"Anomalies and their implications"

Anomalous magnetic moment

Particle with mass *m* and charge *e* :

Pauli equation: g = 2 $i\hbar \frac{\partial}{\partial t}\psi(\mathbf{x},t) = \left\{\frac{1}{2m}(\mathbf{p}-e\mathbf{A})^2+\right.$

Quantum corrections: g = 2(1 + a), a: anomalous magnetic moment

First-order QED correction calculated by Schwinger:

$$g = 2\left(1 + \frac{\alpha}{2\pi}\right)$$

$$\boldsymbol{\mu} = \boldsymbol{g} \, \frac{e\hbar}{2m} \, \boldsymbol{S}, \qquad \boldsymbol{S} = \frac{\boldsymbol{\sigma}}{2}$$

$$e\Phi - \frac{e\hbar}{2m}\boldsymbol{\sigma}\cdot\boldsymbol{B}\bigg\}\psi(\boldsymbol{x},t)$$

Higher-order corrections

QED corrections:

Weak corrections:

Hadronic corrections:

Hartmut Wittig

....

The muon anomalous magnetic moment as a probe for new physics

Persistent tension between SM prediction for a_{μ} and E821 experiment at BNL

Can effects from BSM physics account for the shortfall of the SM prediction?

 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{strong}}$ $a_{\mu} = a_{\mu}^{\text{SM}} + a_{\mu}^{\text{NP}} ?$

Why the muon?

$$a_{\ell}^{\rm NP} \propto m_{\ell}^2 / M_{\rm NP}^2, \quad \ell = e, \mu, \tau$$

 \rightarrow sensitivity of a_{μ} enhanced by $(m_{\mu}/m_e)^2 \approx 4.3 \times 10^4$

While a_{τ} would be even more sensitive, τ 's are difficult to handle experimentally

Theory confronts experiment

Muon g - 2 Theory Initiative

Agree on common SM prediction Focus on hadronic contributions Prospects for increased precision

White Paper:

T. Aoyama et al., Phys Rep 887 (2020) 1

Hartmut Wittig

Muon g - 2 Theory Initiative

White Paper: T. Aoyama et al., Phys Rep 887 (2020) 1

Hartmut Wittig

https://www-conf.kek.jp/muong-2theory/

Outline

VERT

QED and electroweak contributions to a_{μ}

Hadronic contributions:

- Leading-order vacuum polarisation
- Light-by-light scattering

Synthesis — Discussion — Outlook

Hartmut Wittig

Outline

QED contributions to a_{μ}

QED contribution has been worked out to in perturbation theory to 5-loop order:

PRL 109, 111808 (2012)

PHYSICAL REVIEW LETTERS

Complete Tenth-Order QED Contribution to the Muon g - 2

Tatsumi Aoyama,^{1,2} Masashi Hayakawa,^{3,2} Toichiro Kinoshita,^{4,2} and Makiko Nio² ¹Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan ²Nishina Center, RIKEN, Wako, Japan 351-0198 ³Department of Physics, Nagoya University, Nagoya, Japan 464-8602 ⁴Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA (Received 24 May 2012; published 13 September 2012)

SM	116 591 810	100 %	#diagrams
QED(tot)	116 584 718.931	99,9939 %	
2	116 140 973.321	99,6133 %	1
4	413 217.626	0,3544 %	9
6	30 141.902	0,0259 %	72
8	381.004	0,0003 %	891
10	5.078	4·10-6 %	12672

week ending 14 SEPTEMBER 2012

VI(grown

VI(f)

VI(h)

VI(i)

VI(j)

Two main approaches:

- Dispersion theory using experimentally determined cross sections ("data-driven")
- Lattice QCD calculations ("ab initio")

Hadronic vacuum polarisation (HVP)

Hadronic light-by-light scattering (HLbL)

Hadronic vacuum polarisation from dispersion theory

Analyticity, unitarity & optical theorem imply:

$$m = \int \frac{ds}{\pi(s-q^2)} \operatorname{Im} m$$

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2}, \quad R_{\text{ha}}$$

Hadronic effects cannot be treated in perturbation theory

- Use experimental data for $R_{had}(s)$ in the low-energy regime ("data-driven approach")
- Standard Model prediction is subject to experimental uncertainties

 $_{ad}(s) = \frac{3s}{4\pi \alpha(s)} \sigma(e^+e^- \to \text{hadrons})$ "R-ratio"

Data-driven approach: Hadronic cross sections

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2}$$

Hartmut Wittig

Decade-long effort to measure e^+e^- cross sections $\sqrt{s} \leq 2 \,\text{GeV}$: sum of exclusive channels $\sqrt{s} > 2 \text{ GeV}$: inclusive channels, narrow resonances, perturbative QCD

Two-pion channel accounts for $\approx 70\%$ of LO-HVP Subleading channels: ω, ϕ decays, final states with 3 pions, 2 kaons, 4 pions,...

Evaluation of the dispersion integral

Many different groups and analyses (DHMZ, KNT, FJ, CHHKS, BHLS,...) Disagreement for some exclusive channels

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
J/ψ , $\psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

Merging procedure: average of individual results + theoretical constraints + conservative error estimate (reflecting tensions in the data, differences in procedures)

> $a_u^{\text{hvp, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{syst}}(0.7)_{\text{DV+QCD}} \times 10^{-10} = 693.1(4.0) \times 10^{-10}$ [0.6%]

Hadronic vacuum polarisation from Lattice QCD

Vacuum polarisation function depends smoothly on Euclidean momentum Q^2

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dx_0 \,\tilde{K}(x_0) \,G(x_0), \quad G(x_0)$$
$$J_{\mu} = \frac{2}{3} \overline{u} \gamma_k u - \frac{1}{3} \overline{d} \gamma_k d - \frac{1}{3} \overline{s} \gamma_k s + \frac{2}{3} \overline{c} \gamma_k c + \dots$$

Challenges:

- Sub-percent statistical precision
- Finite-volume corrections
- Control over discretisation effects
- Quark-disconnected diagrams
- Isospin-breaking effects relevant

No reliance on experimental data (except for simple hadronic quantities, e.g. $m_{\rm nucl}, m_K, \ldots$)

Hadronic vacuum polarisation from Lattice QCD Range of discretisations of the QCD action probed by different groups Finite-volume effects significant but well controlled

Extrapolation to the physical point

[BMW Collab. (Borsányi et al.), 2002.12347]

Light-quark connected contribution dominates

Hadronic vacuum polarisation: *R*-ratio versus lattice QCD

White Paper, Muon g - 2 Theory Initiative:

R-ratio: $a_u^{\text{hvp, LO}} = (693.1 \pm 4.0) \cdot 10^{-10}$ [0.6%] LQCD: $a_u^{\text{hvp, LO}} = (711.6 \pm 18.4) \cdot 10^{-10}$ [2.6%] [Aoyama et al., Phys. Rep. 887 (2020) 1, arXiv:2006.04822]

Recent Lattice QCD result by BMW Collab.:

 $a_u^{\text{hvp, LO}} = (707.5 \pm 2.3 \pm 5.0) \cdot 10^{-10}$ [0.8%]

[Borsányi et al., Nature 593 (2021) 7857, arXiv:2002.12347]

 $(2.1\sigma \text{ tension with } R \text{-ratio})$

Requires independent confirmation

Hadronic light-by-light scattering

Dominant contribution from pseudoscalar meson exchange

 \rightarrow transition form factor $\pi^0 \rightarrow \gamma^* \gamma^{(*)}$

Results for π^0 -contribution:

 $(a_{\mu}^{\text{hlbl}})_{\pi^{0}} = \begin{cases} (59.7 \pm 3.6) \cdot 10^{-11} \text{ Lattice QCD} \quad [Gérardin et al., 1903.09471] \\ (62.6 + 3.0) \cdot 10^{-11} \quad \text{Disp. theory} \quad [Hoferichter et al., 1808.04823] \end{cases}$

Direct lattice calculations:

 $a_{\mu}^{\text{hlbl}} = \begin{cases} (78.7 \pm 35.4) \cdot 10^{-11} & [Blum \ et \ al., 1911.08123] \\ (106.8 \pm 14.7) \cdot 10^{-11} & [Chao \ et \ al., 2104.02632] \end{cases}$

 $32Dfine \vdash \Delta$ 24D-32D 48I-64I ⊢ ■ $\inf \& \operatorname{cont} \longmapsto$

48I ⊢ ◆ – | 64I ⊢---24D ⊢ ■ 32D ⊢×

Hadronic light-by-light scattering

Current status

Contributions to the muon g - 2 from electromagnetism, weak and strong interactions:

Weak:

Hadronic vacuum polarisation:

Hadronic light-by-light scattering:

 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hvp}} + a_{\mu}^{\text{hlbl}} = 116\,591\,810(43) \times 10^{-11}$

[Aoyama et al., Phys. Rep. 887 (2020) 1, arXiv:2006.04822]

 $116584718.9(1) \times 10^{-11}$ 0.001 ppm $153.6(1.0) \times 10^{-11}$ 0.01 ppm $6845(40) \times 10^{-11}$ 0.34 ppm [0.6%] $92(18) \times 10^{-11}$ 0.15 ppm [20%]0.37 ppm

Standard Model prediction versus experiment

SM prediction:

 $a_{\mu}^{\rm SM} = 116\,591\,810(43) \times 10^{-11}$

FNAL E989 (2021):

 $a_{\mu}^{\text{E989}} = 116\,592\,040(54) \times 10^{-11}$

Combined with BNL E821 (2004):

 $a_{\mu}^{\exp} = 116\,592\,061(41) \times 10^{-11}$

Standard Model prediction versus experiment

SM prediction:

 $a_{\mu}^{\rm SM} = 116\,591\,810(43) \times 10^{-11}$

FNAL E989 (2021):

 $a_{\mu}^{\text{E989}} = 116\,592\,040(54) \times 10^{-11}$

Combined with BNL E821 (2004):

 $a_{\mu}^{\exp} = 116\,592\,061(41) \times 10^{-11}$

 $\Rightarrow a_{\mu}^{\text{SM}} - a_{\mu}^{\text{exp}} = 251(59) \times 10^{-10} \quad (4.2\,\sigma)$

Discussion

Correlation between a_{μ} and the hadronic running of α :

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{\alpha M_Z^2}{3\pi} P \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\rm had}(s)}{s(M_Z^2 - s)}$$

Can the SM accommodate a higher value f global EW fit?

- Large changes in $R_{had}(s)$ must occur for $\sqrt{s} \lesssim 2 \,\text{GeV}$
- Resulting scenarios differ substantially from data

[Crivellin et al., 2020; Keshavarzi et al., 2020; Malaescu & Schott, 2020; Colangelo, Hoferichter, Stoffer 2020]

\rightarrow Input quantity for global electroweak fit

Can the SM accommodate a higher value for a_{μ} without increasing the tension in the

Summary & Outlook

Bulk of SM uncertainty due to the strong interaction Hadronic vacuum polarisation:

- Decade-long experience with data-driven approach: 0.6% precision
- Recent lattice calculation with 0.8~% error requires independent confirmation

Hadronic light-by-light scattering:

- Data-driven approach with almost fully quantified errors
- Good agreement with recent lattice QCD calculations: $\sim 15~\%$

Future improvements:

- Resolve / clarify the tension in the hadronic cross section data • Check consistency of lattice calculations and dispersive approach

Increased tension of 4.2 σ between Standard Model prediction of a_{μ} and experiment

Hartmut Wittig

HVP in Lattice QCD: crosschecks

Designed to reduce / enhance sensitivity on certain systematics "Window" quantities:

Restrict convolution integral to sub-intervals sensitive to different systematic effects Test consistency of different lattice discretisations Comparison with corresponding result based on *R*-ratio

Calculation by BMW Collaboration

Staggered quarks: use EFT to correct for "taste-breaking" effects

- Statistical analysis of different variants of continuum extrapolation yields systematic error

light µ,win) iso

