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Where is the new physics??

Despite thousands of searches for new physics at the LHC, nothing but 
limits and null results so far.

What if new physics is hiding in the data but we haven’t 
looked in the right places yet?



The most common approach
Model specific searches

Most NP searches at the LHC are heavily optimized with specific 
signals in mind (SUSY, extra dimensions, …)

Kinematic cuts (or BDTs) optimized using simulations of signal AND 
background. 

5.2 The BDT search

This search strategy is applied separately through two sets of signal regions targeting models with gluino-pair
production with direct (BDT-GGd) or one-step (BDT-GGo) 6̃ decays. In each set, events are separated
into four categories, depending on the mass di�erence �<(6̃, j̃0

1) in the target model. A dedicated BDT
discriminant is used in each signal region to obtain optimum sensitivity to the targeted models. The
signal regions are listed in Table 7, with the values of �<(6̃, j̃0

1) targeted by each of the SRs indicated in
the last rows of the table. The signal regions are not mutually exclusive and hence cannot be combined
statistically.

BDT-GGd1 BDT-GGd2 BDT-GGd3 BDT-GGd4

#j � 4

�q( 91,2, (3) , pmiss
T ) min > 0.4

�q( 9
8>3, pmiss

T ) min > 0.4

⇢
miss
T /<e� (#j) > 0.2

<e� [GeV] > 1400 > 800

BDT score > 0.97 > 0.94 > 0.94 > 0.87

�<(6̃, j̃0
1 ) [GeV] 1600–1900 1000–1400 600–1000 200–600

BDT-GGo1 BDT-GGo2 BDT-GGo3 BDT-GGo4

#j � 6 � 5

�q( 91,2, (3) , pmiss
T ) min > 0.4 > 0.2

�q( 9
8>3, pmiss

T ) min > 0.4 > 0.2

⇢
miss
T /<e� (#j) > 0.2

<e� [GeV] > 1400 > 800

BDT score > 0.96 > 0.87 > 0.92 > 0.84

�<(6̃, j̃0
1 ) [GeV] 1400–2000 1200–1400 600–1000 200–400

Table 7: Signal region selections for the BDT search with the benchmark signal model parameters (�<(6̃, j̃0
1)) used

in the optimisation, for (top) direct and (bottom) one-step gluino decays, respectively.

After applying the preselection criteria from Table 2, additional selection criteria are applied to the
BDT-GGd and BDT-GGo signal regions to further distinguish between signal and background processes,
prior to the final selections based on the BDT discriminants. All BDT-GGd regions require the presence of
at least four jets, with �q( 91,2, (3) , pmiss

T ) min > 0.4, �q( 98>3, pmiss
T ) min > 0.4 and ⇢

miss
T /<e� (4 9) > 0.2 to

further suppress the multi-jet background. Additionally, ⇢miss
T /<e� (#j) > 0.2 is required in all regions.

The BDT-GGo regions require the presence of at least six (BDT-GGo1 and BDT-GGo2) or five (BDT-GGo3
and BDT-GGo4) jets, with �q( 91,2, (3) , pmiss

T ) min > 0.4 and �q( 98>3, pmiss
T ) min > 0.4 in all regions except

in BDT-GGo4, where looser requirements of �q( 91,2, (3) , pmiss
T ) min > 0.2 and �q( 98>3, pmiss

T ) min > 0.2 are
applied. To select events close to the kinematic regions of interest, <e� > 1400 GeV is required in the
BDT-GGd1, BDT-GGd2, BDT-GGo1 and BDT-GGo2 regions, and <e� > 800 GeV in the BDT-GGd3,
BDT-GGd4, BDT-GGo3 and BDT-GGo4 regions.

For the final selection in each of the eight signal regions, a dedicated BDT is trained for events satisfying
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> 99% of search
es at 

the LHC are of this ty
pe



Of course, we should continue to perform these model-specific 
searches, because NP could always be right around the corner…

But we probably can’t cover every possible model this 
way…



A Benchmark Example
LHC Olympics 2020 R&D Dataset
https://doi.org/10.5281/zenodo.2629072

Z’

X

Y

q

q

q

q

No explicit search at the LHC for this scenario!

Could be hiding in the dijet resonance search at >5sigma significance!!



General approaches to anomaly detection

Outlier detection

• Look for events where

• Can find rare signals, can be fully model independent (or at least, may not require 
very precise background model)

• Uncontrolled, no optimality guarantee — new physics may not be an outlier! 

Group anomaly detection

• Look for over-densities in data over background expectation

• Optimal discriminant:

• Generally requires more assumptions on signal and background model — either 
data driven (eg sideband interpolation, ABCD method) or from simulation 

R(x) =
pdata(x)

pbg(x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

pbg(x) n 1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Existing model-independent searches
“the bump hunt”

Idea: assume signal is localized in some feature (usually invariant mass) 
while background is smooth. 

Interpolate from sidebands into signal region, search for an excess.



Existing model-independent searches
“the bump hunt”

Idea: assume signal is localized in some feature (usually invariant mass) 
while background is smooth. 

Interpolate from sidebands into signal region, search for an excess.

Classic
 method, used in many discoveries.



Idea: divide the phase space up into thousands of bins, compare 
data to SM simulation in each one

CMS

“MUSIC”

Existing model-independent searches 
“the general search”

See also proposals by D’Agnolo, Wulzer et al (1806.02350, 1912.12155):  
train DNN on full phase space to distinguish data from background

20

b jets are dominated by tt production. Figures for additional object groups can be found in
Appendix A.
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Figure 8: Data and SM predictions for the most significant exclusive event classes, where the
significance of an event class is calculated in a single aggregated bin. Measured data are shown
as black markers, contributions from SM processes are represented by coloured histograms,
and the shaded region represents the uncertainty in the SM background. The values above the
plot indicate the observed p-value for each event class.

8.3 Results of the RoI scans

Some typical examples of kinematic distributions are shown. The distributions in Fig. 10
for ST and M belong to the 2µ exclusive event class, and the p

miss
T distribution is from the

2µ + p
miss
T + X inclusive event class. No significant deviations are found with respect to the

SM expectations. The aforementioned distributions illustrate the variable binning depending
on the resolution, and the contributions of the different physics processes. They also show ex-
perimental features arising from a combination of the threshold effects, such as the trigger and
the minimum pT of the selected objects, along with effects related to the underlying physics,
such as the peak associated with the Z boson. In the p

miss
T distribution, a global offset between

data and SM simulation is observed, covered by the uncertainties, which are mostly related
to p

miss
T and dominated by the uncertainties in the jet energy scale and resolution. In general,

the observed differences between data and SM simulation are covered by the systematic uncer-
tainties over the entire kinematic ranges, and the resulting p̃-values for the regions of interest
indicate agreement between the two.

The global overview plots for the M, ST, and p
miss
T RoI scans for the exclusive event classes are

shown in Fig. 11. The corresponding plots for the inclusive and the jet-inclusive classes are
shown in Figs. 12 and 13, respectively. The distributions observed based on the scans of the
data are consistent with the expectations based on simulation within the uncertainty bands.

ATLAS

“Model independent 
general search”

CMS-PAS-EXO-14-016 1807.07447  
EPJC 79:120 (2019)
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Appendix A.
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ATLAS

“Model independent 
general search”

CMS-PAS-EXO-14-016 1807.07447  
EPJC 79:120 (2019)

Truly sig
nal model independent, but stil

l 

highly (b
ackground) sim

ulatio
n dependent



New paradigms for model-agnostic searches

Can advances in machine learning open up new avenues for 
model-independent searches?

details of the ANODE approach and provides a brief introduction to normalizing flows. The
reminder of the paper illustrates ANODE through an example based on a dijet search using
jet substructure. Details of the simulated samples are provided in Sec. ?? and the results for
the signal sensitivity and background specificity are presented in Sec. ?? and ??, respectively.
A study of correlations between the discriminating features and the resonant feature is in
Sec. ??. The paper ends with conclusions and outlook in Sec. ??.

2 An Overview of Model (In)dependent Searches

A viable search for new physics generally must have two essential components: it must be
sensitive to new phenomena and it must also be able to estimate the background under the
null hypothesis (Standard Model only). The categorization of a search’s degree of model
(in)dependence requires consideration of both of these components. Figure ?? illustrates how
to characterize model independence for both BSM sensitivity and SM background specificity.
We will now consider each in turn.

signal model independence
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Figure 1. A graphical representation of searches for new particles in terms of the background and
signal model dependence for achieving signal sensitivity (a) and background specificity (b). The Model
Unspecific Search for New Physics (MUSiC) [? ? ] and General Search [? ? ? ] strategies are
from CMS and ATLAS, respectively. LDA stands for Latent Dirichlet Allocation [? ? ], ANOmaly
detection with Density Estimation (ANODE) is the method presented in this paper, CWoLa stands
for Classification Without Labels [? ? ? ] and SALAD stands for Simulation Assisted Likelihood-free
Anomaly Detection [? ]. Direct density estimation is a form of side-banding where the multidimensional
feature space density is learned conditional on the resonant feature (see Sec. ??).
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Bump hunt
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from Nachman & DS 2001.04990

Many new 
ideas recently!



It consisted of three “black boxes” of simulated data (bg dominated!):

• 1 million events each

• 4-vectors of every reconstructed particle (all hadronic) in the event

• Particle ID, charge, etc not included

• Single R=1 jet trigger pT>1.2 TeV

The goal of the challenge was for participants to analyze each box and 

1. Decide whether or not it contains new physics

2. Characterize the new physics, if it’s there

https://doi.org/10.5281/zenodo.3547721

Many new approaches inspired by the  
LHC Olympics 2020 Data Challenge  
[G. Kasieczka, B. Nachman & DS, organizers]



LHC Olympics 2020: R&D Dataset

Prior to the challenge, we also released a labeled R&D dataset consisting 
of 1M QCD dijet events and 100k signal events

https://doi.org/10.5281/zenodo.2629072

Z’

X

Y

q

q

q

q

mY=100 GeV

mZ’=3.5 TeV

mX=500 GeV

Unofficial theme of LHCO2020: 
“enhancing the bump hunt”



The LHC Olympics 20201

A Community Challenge for Anomaly2

Detection in High Energy Physics3

4
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8Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia24

9Nevis Laboratories, Columbia University, 136 S Broadway, Irvington NY, USA25

10Physik Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland26

11SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA27
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arxiv: 2101.08320

• 9 groups submitted results on box 1

• 5 groups submitted results on boxes 2 and 3

• (A number of additional groups could not finish 
the challenge in time but got results on the R&D 
dataset, or on the black boxes after unblinding)

• Two workshops: 

• “Winter Olympics” — special session of 
the ML4Jets conference, January 2020, 
NYU [box 1 opened]

• “Summer Olympics” — virtual anomaly 
detection mini-workshop, July 2020, 
“Hamburg” [boxes 2 & 3 opened]

Many new approaches inspired by the  
LHC Olympics 2020 Data Challenge
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Unsupervised Anomaly Detection

General idea: train ML algorithm directly on (background-
dominated) data to identify outliers [events with low pbg(x)]

Example:  Autoencoders

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

Train lossy ML algorithm to map data to 
itself through a compressed latent space.

Rare anomalies should be poorly reconstructed

Heimel, Kasieczka, Plehn & Thompson 1808.08979 
Farina, Nakai & DS 1808.08992  
and many, many more!



Several successful LHCO2020 approaches were 
based on AEs.

Unsupervised Anomaly Detection

BuHuLaSpa
Bortolato et al 2103.06595

Particle Graph Autoencoders, Tsan et al 

VRNN, Kahn et al 2105.09274



General idea: train ML algorithm to compare two datasets with 
different levels of signal, identify events with high pdata(x)/pbg(x)

Example:  “CwoLa Hunting” [Collins, Howe & Nachman 1805.02664]

Weakly-supervised Anomaly Detection

Z’->XY (boosted), X->?, Y->?

Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
that the density estimation is more accurate when the densities are high and worse when
the densities are low. This is also to be expected: if there are many data points close to one
another, it should be easier to estimate their density than if the data points are very sparse.

Another view of the results is presented in Fig. 5, with one-dimensional information
about R(x|m) in the SR. The left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R = 1 with a standard deviation of approximately 17%.
This width is due to various sources, including the accuracy of the SR density, the accuracy of
the SB density, and the quality of the interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for training, the neural network flexibility,
and the training procedure. The right plot of Fig. 5 presents the number of background and
signal events as a function of a threshold R > Rc. The starting point are the original numbers

– 12 –

SR

SBSB

Train a binary classifier on 
additional features  
x=mj1, mj2, tau21(j1), tau21(j1), … 
to distinguish between signal 
region and sideband events.

If additional features are uncorrelated with mJJ in the background, 
should learn pdata(x)/pbg(x) [Neyman-Pearson lemma]



Another example:  Simulation Assisted Likelihood-free Anomaly 
Detection (SALAD) [Andreassen, Nachman & DS 2001.05001]

Weakly-supervised Anomaly Detection

Try to leverage simulated backgrounds for learning pdata(x)/pbg(x): 
• reweight bg sim to look like data in sideband region using DCTR method 

[Andreassen & Nachman 1907.08209]

• interpolate into SR

• train classifier on data vs bg.  



Between weak and un-supervised 

ANOmaly detection with Density Estimation (ANODE):  
[Nachman & DS 2001.04990] 

Use unsupervised approach to learn the likelihood ratio:

• Train density estimator to directly learn pSR(x) and pSB(x) 

• Interpolate latter in mJJ to obtain pbg(x) in the SR

• Construct likelihood ratio R(x)=pdata(x)/pbg(x) explicitly



Between weak and un-supervised 

ANOmaly detection with Density Estimation (ANODE):  
[Nachman & DS 2001.04990] 

Use unsupervised approach to learn the likelihood ratio:

• Train density estimator to directly learn pSR(x) and pSB(x) 

• Interpolate latter in mJJ to obtain pbg(x) in the SR

• Construct likelihood ratio R(x)=pdata(x)/pbg(x) explicitly

Figure 4. Scatter plot of R(x|m) versus log pbackground(x|m) across the test set in the SR. Background
events are shown (as a two-dimensional histogram) in grayscale and individual signal events are shown
in red.

Figure 5. Left: Histogram of R(x|m) evaluated on the test set; Right: the integrated number of
events that survive a threshold on R(x|m). The two distributions are scaled to represent the rates for
500,000 total background events and 500 total signal events, as introduced in Sec. 4.

to have the same number of events as each other and in total, the same as the SR. A single NN
with four hidden layers with 64 notes each is trained using Keras [120] and TensorFlow [121].
Dropout [122] of 10% is used for each intermediate layer. Intermediate layers use rectified
linear unit activation functions and the last layer uses a sigmoid. The classifier is optimized
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Figure 6. Distributions of mJ1 (left) and mJ2 ≠ mJ1 (right) in the signal region after applying a
threshold requirement on R.

Figure 7. Receiver Operating Characteristic (ROC) curve (left) and Significance Improvement
Characteristic (SIC) curve (right).

using binary cross entropy and is trained for 300 epochs. As with ANODE, 10 epochs are
averaged for the reported results3.

The performance of ANODE is comparable to CWoLa hunting in Fig. 7, which does
slightly better at higher signal e�ciencies and much better at lower signal e�ciencies. This
may be a reflection of the fact that CWoLa makes use of supervised learning and directly
approaches the likelihood ratio, while ANODE is unsupervised and attempts to learn both
the numerator and denominator of the likelihood ratio. With this dataset, ANODE is able to
enhance the signal significance by about a factor of 7 and would therefore be able to achieve a
local significance above 5‡ given that the starting value of S/

Ô
B is 1.6.

3A di�erent regularization procedure was used in Ref. [32, 33] based on the validation loss and k-folding.
The averaging here is expected to serve a similar purpose.
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Can enhance the significance of the 
bump hunt by a factor of up to 7!

1.5σ (dijet bump hunt)  
=> 10σ (ANODE+bump hunt)



(Semi)Supervised Anomaly Detection

General idea: train ML algorithm on signal and background 
simulation, apply to data to find “signal-like” events

Example:  Quasi Anomalous Knowledge (QUAK) 
[Park, Rankin, Udrescu, Yunus, Harris 2011.03550]

Train separate autoencoders on signal 
models and background model. 

Look for events in data with high background 
loss and low signal loss 



Summary and Outlook

• Advances in machine learning are opening up new and exciting 
avenues for model independent new physics searches at the LHC.

• The LHC Olympics 2020 provided a very useful testing ground for the 
development and common benchmarking of new approaches.

• Much work remains to be done in order to port these ideas over to 
ATLAS and CMS and implement them as actual analyses on real data.

• We need more ideas for model-independent searches at the LHC. 
This is just the beginning! 



Q: Why is there no model independent search group???

Current Organization of Physics Analysis Groups at the LHC

SUSY
Top

Higgs

SM

B physics Exotics/
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from G. Kasieczka, B. Nachman, DS (eds), et al 2101.08320

A vision for the future…

Future Organization of Physics Analysis Groups at the LHC??

SUSYTop
Higgs

SM

B physics

Exotics/
Exotica

B2G / 
HDBSModel 

Agnostic?
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Thanks for your attention!



S=500, B=500,000, BSR=61,000 

S/BSR~6x10-3, S/√BSR~1.5
Figure 2. Histograms for the invariant mass of the leading two jets for the Standard Model background
as well as the injected signal. There are 1 million background events and 1000 signal events.

epochs results in a stable result. Averaging over more epochs does not further improve the
stability. All results with ANODE present the SB density estimator with this averaging scheme
for the last 10 epochs.

Figure 4 shows a scatter plot of R(x|m) versus log pbackground(x|m) for the test set in the
SR. As desired, the background is mostly concentrated around R(x|m) = 1, while there is a long
tail for signal events at higher values of R(x|m) and between ≠2 < log pbackground(x|m) < 2.
This is exactly what is expected for this signal: it is an over-density (R > 1) in a region of
phase space that is relatively rare for the background (pbackground(x|m) π 1).

The background density in Fig. 4 also shows that the R(x|m) is narrower around 1 when
pbackground(x|m) is large and more spread out when pbackground(x|m) π 1. This is evidence
that the density estimation is more accurate when the densities are high and worse when
the densities are low. This is also to be expected: if there are many data points close to one
another, it should be easier to estimate their density than if the data points are very sparse.

Another view of the results is presented in Fig. 5, with one-dimensional information
about R(x|m) in the SR. The left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R = 1 with a standard deviation of approximately 17%.
This width is due to various sources, including the accuracy of the SR density, the accuracy of
the SB density, and the quality of the interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for training, the neural network flexibility,
and the training procedure. The right plot of Fig. 5 presents the number of background and
signal events as a function of a threshold R > Rc. The starting point are the original numbers
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Resonant feature
m = mZ0 = mJJ
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LHC Olympics 2020: R&D Dataset

Benchmark 
signal strength:



Figure 3. The four features used for classification: mJ1 (top left), mJ1 ≠ mJ2 (top right), ·J1
21 (bottom

left), and ·J2
21 (bottom right). These histograms are inclusive in mJJ . There are 1 million background

events and 1000 signal events for the mass histograms.

background (40,000) and signal (400) numbers in the SR window and the fiducial window.
Starting from low S/B and S/

Ô
B one can achieve S/B > 1 and a high S/

Ô
B with a threshold

requirement on R. Figure 6 shows that the signal is clearly visible in the x distribution after
applying such a threshold requirement.

The performance of R as an anomaly detector is further quantified by the Receiver
Operating Characteristic (ROC) and Significance Improvement Characteristic (SIC) curves in
Fig. 7. These metrics are obtained by scanning R and computing the signal e�ciency (true
positive rate) and background e�ciency (false positive rate) after a threshold requirement
on R. The Area Under the Curve (AUC) for ANODE is 0.82. For comparison, the CWoLa
hunting approach is also shown in the same plots. The CWoLa classifier is trained using
sideband regions that are 200 GeV wide on either side of the SR. The sidebands are weighted

– 13 –

x = (mJ1 ,mJ2 , ⌧
J1
21 , ⌧

J2
21 )
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Additional features:

LHC Olympics 2020: R&D Dataset
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Figure 51. Results of unblinding the first black box. Shown are the predicted resonance mass
(top left), the number of signal events (top right), the mass of the first daughter particle (bottom
left), and the mass of the second daughter particle (bottom right). Horizontal bars indicate the
uncertainty (only if provided by the submitting groups). In a smaller panel the pull (answer-
true)/uncertainty is given. Descriptions of the tested models are provided in the text.

signal, these results highlight a possible vulnerability of anomaly detection methods in the

tail of statistical distributions.

For Black Box 3 a resonance decaying to hadrons and invisible particles (PCA), a

resonance with a mass between 5.4 and 6.4 TeV (LDA), at 3.1 TeV (embedding clustering),

and between 5 and 5.5 TeV (QUAK) was reported. No signal was observed by one approach

(VRNN). The true injected resonance with a mass of 4.2 TeV and two competing decay

modes was not detected by any approach.

After unveiling the black boxes, further submissions and improvements to the anomaly

detectors were made. The VRNN and BuHuLaSpa (Sec. 3.3) approaches now report an

enhancement at an invariant mass below 4 TeV for black box 1, while no signal is observed

for the other two black boxes. With deep ensemble anomaly detection (Sec. 5.1) a resonance

at 3.5 TeV is seen for the first black box and for Latent Dirichlet Allocation a resonance

not incompatible with 3.8 TeV is observed. Another new submission was Particle Graph

Autoencoders (Sec 3.7) which detected a resonance at 3.9 TeV for the first black box.

Finally, a resonance at 3.5 TeV was seen using CWoLa hunting (Sec. 4.1). For Black Box

two and three, no additional observations of a signal were reported after unblinding.

6.2 Overall Lessons Learned

This large and diverse number of submissions on the blinded and unblinded datasets is very

encouraging. Even better, the resonance in the first black box was successfully detected
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Two approaches clearly stood out:
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Conditional density estimation for anomaly detection
George Stein, Uros Seljak, Biwei Dai, He Jia
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Used the ANODE method with a 
novel density estimator!

Two approaches clearly stood out:

Figure 51. Results of unblinding the first black box. Shown are the predicted resonance mass
(top left), the number of signal events (top right), the mass of the first daughter particle (bottom
left), and the mass of the second daughter particle (bottom right). Horizontal bars indicate the
uncertainty (only if provided by the submitting groups). In a smaller panel the pull (answer-
true)/uncertainty is given. Descriptions of the tested models are provided in the text.
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Used a combination of autoencoders 
and CWoLa hunting

Tag N’ Train

Tag N’ Train

Tag N’ Train



Box 2

No signal! QCD background only.

4 of the 5 submissions found false positives…

Clearly a matter of concern / area of future improvement for anomaly 
detection approaches!



Box 3

No jet substructure. 

Two decay modes of X resonance. Need to combine to reach 
discovery significance. 

No approach succeeded in finding the signal.

q

q

Y

g

g

g

X

q

q

q

q

X

Figure 2. Feynman diagrams for signal of Black Box 3.
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ANODE: Anomaly Detection with Density Estimation 
Nachman & DS 2001.04990

Example of a new approach inspired by LHCO2020.  
(See Ben’s talk for additional new approaches!)

Use neural density estimation to directly learn the conditional probability 
densities from the data

interpolate in (x,mJJ)

Construct the likelihood ratio:

P(x|data; mJJ 2 SR)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P(x|bg; mJJ 2 SR)
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R(x) =
P(x|data; mJJ 2 SR)

P(x|bg; mJJ 2 SR)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P(x|data; mJJ /2 SR) = P(x|bg; mJJ /2 SR)
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5.2 Background Estimation

This section explores the possibility of using the estimate of pbackground(x|m) to directly
determine the background e�ciency in the SR after a requirement on R > Rc. Figure 8 presents
a comparison between integration methods (direct integration and importance sampling)
described in Sec. 3.2 and the true background yields. Qualitatively, both methods are able to
characterize the yield across several orders of magnitude in background e�ciency. However,
both methods diverge from the truth in the extreme tails of the R distribution. The right plot
of Fig. 8 o�ers a quantitative comparison between methods. For e�ciencies down to about
10≠3, both methods are accurate within about 25%. The direct integration method has a
smaller bias of about 10%. This is consistent with Fig. 5, for which the standard deviation is
between 10-20%.

Figure 8. Left: The number of events after a threshold requirement R > Rc using the two integration
methods described in Sec. 3.2, as well as the true background yield. Right: The ratio of the predicted
and true background yields from the left plot, as a function of the actual number of events that survive
the threshold requirement. The shaded bands around the central predictions are the 1‡ statistical
(Poisson) uncertainty derived from the observed background counts. The black dashed and dotted lines
are 10% and 20% around a ratio of 1.

5.3 Performance on a Dataset with Correlated Features

The results presented in the previous sections have established that ANODE is able to identify
the signal and estimate the corresponding SM backgrounds introduced in Sec. 4. One fortuitous
aspect of the chosen features x introduced in Sec. 4 is that they are all relatively independent
of mjj . This is illustrated in Fig. 9, using the SR and neighboring sideband regions. As a
result of this independence, the CWoLa method is able to find the signal and presumably the
ANODE interpolation from SB to SR is easier than if there was a strong dependence.

The purpose of this section is to study the sensitivity of the ANODE and CWoLa hunting
methods to correlations in the features x with mjj . Based on the assumptions of the two
methods, it is expected that with strong correlations, CWoLa hunting will fail to find the
signal while ANODE should still be able to identify the presence of signal in the SR as well
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Can also consider performance on a feature set which is not 
independent of m.  We introduced artificial correlations just as proof 
of concept:

Figure 11. ROC (left) and SIC (right) curves in the signal region using the shifted dataset specified
by Eq. 5.1.

Figure 12. The same as Fig. 8, but for the shifted dataset. In particular, these plots compare the
background prediction from two direct density estimation techniques with the true background yield
after a threshold requirement R(x|m) > Rc.
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ANODE is robust while CWoLa completely fails!
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Figure 9. A comparison of the four features x between the SR and two nearby sidebands defined by
mjj œ [3.1, 3.3] TeV (lower sideband) and mjj œ [3.7, 3.9] TeV (upper sideband).

as estimate the background. To study this sensitivity in a controlled fashion, correlations
are introduced artificially. In practice, adding more features to x will inevitably result in
some dependence with mjj ; the artificial example here illustrates the challenges already in low
dimensions. New jet mass observables are created, which are linearly shifted:

mJ1,2 æ mJ1,2 + c mJJ , (5.1)

where c = 0.1 for this study. The resulting shifted lighter jet mass is presented in Fig. 10.
New ANODE and CWoLa models are trained using the shifted dataset and their perfor-

mance is quantified in Fig. 11. As expected, the fully supervised classifier is nearly the same as
Fig. 7. ANODE is still able to significantly enhance the signal, with a maximum significance
improvement near 4. While in principle ANODE could achieve the same classification accuracy
on the shifted and nominal datasets, the performance on the shifted examples is not as strong
as in Fig. 7. In practice the interpolation of pbackground into the SR is more challenging now
due to the linear correlations. This could possibly be overcome with improved training, better
choices of hyperparameters, or more sophisticated density estimation techniques.

By construction, there are now bigger di�erences between the SR and SB than between
the SR background and the SR signal. Therefore, the CWoLa hunting classifier is not able to
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