


Where is the new physics??

N

THIS 1S WHERE YOU
LOST YOUR WALLET?

e
il

JgP 1

Despite thousands of searches for new physics at the LHC, nothing but
limits and null results so far.

NO, I LOST IT IN THE PARK.
BUT THIS IS WHERE THE LIGHT IS.

What if new physics is hiding in the data but we haven’t
looked in the right places yet?



The most common approach
Model specific searches

Most NP searches at the LHC are heavily optimized with specific
signals in mind (SUSY, extra dimensions, ...)

ATLAS jets+MET 2010.14293

BDT-GGd1 | BDT-GGd2 | BDT-GGd3 | BDT-GGd4
N; > 4
AB(j12,(3)-PT) min >0.4
AG(ji>3:PT") min > 0.4
EMSS Imeg (N;) > 0.2
mef [GeV] > 1400 > 800
BDT score > 0.97 > (0.94 > (0.94 > (0.87
Am(g, X (1)) [GeV] 1600-1900 | 1000-1400 600-1000 200-600

Kinematic cuts (or BDTs) optimized using simulations of signal AND

background.
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You'RE J’uST AROUND THE
CORNER FROM ANOTHER PIECE
OF CHEESE. ARE YOU SURE
You WANT To QUIT NoW ?

Of course, we should continue to perform these model-specific
searches, because NP could always be right around the corner...

But we probably can’t cover every possible model this
waYOQO



A Benchmark Example

LHC Olympics 2020 R&D Dataset
https://doi.org/10.528 1 /zenodo.2629072
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No explicit search at the LHC for this scenario!

Could be hiding in the dijet resonance search at >5sigma significance!!




General approaches to anomaly detection

Outlier detection

Look for events where Ppg (r) « 1

Can find rare signals, can be fully model independent (or at least, may not require
very precise background model)

Uncontrolled, no optimality guarantee — new physics may not be an outlier!

Group anomaly detection

Look for over-densities in data over background expectation

Optimal discriminant:

_ Pdata (37)

Rz Pbg ()

Generally requires more assumptions on signal and background model — either
data driven (eg sideband interpolation, ABCD method) or from simulation



Existing model-independent searches

“the bump hunt”

|dea: assume signal is localized in some feature (usually invariant mass)

while background is smooth.

Interpolate from sidebands into sighal region, search for an excess.

19.7 b (8 TeV) + 5.1 fb™ (7 TeV)
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Existing model-independent searches
“the bump hunt”
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Existing model-independent searches
“the general search”

|dea: divide the phase space up into thousands of bins, compare
data to SM simulation in each one
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See also proposals by D’Agnolo,Wulzer et al (1806.02350, 1912.12155):
train DNIN on full phase space to distinguish data from background
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See also proposals by D’Agnolo,Wulzer et al (1806.02350, 1912.12155):
train DNIN on full phase space to distinguish data from background



New paradigms for model-agnostic searches

Can advances in machine learning open up new avenues for
model-independent searches?

Some searches
(train signal

versus data)
Bump hunt

Most searches  MuSiC (CMS),

(train with General Search
simulations) (ATLAS)

background (SM) model independence

signal model independence



New paradigms for model-agnostic searches

Can advances in machine learning open up new avenues for
model-independent searches?

from Nachman & DS 2001.04990

' autoencoders?
Some searches LDA "
(train signal  § ANODE § Many new
versus data) § c\wola ; ideas recently!

v SALAD

Most searches  MUSIC (CMS),
(train with General Search
simulations) (ATLAS)

background (SM) model independence

signal model independence



Many new approaches inspired by the
LHC Olympics 2020 Data Challenge

[G. Kasieczka, B. Nachman & DS, organizers]

It consisted of three “black boxes” of simulated data (bg dominated!):
https://doi.org/10.5281/zenodo.3547721

® | million events each
® 4-vectors of every reconstructed particle (all hadronic) in the event
® Particle ID, charge, etc not included

e Single R=1 jet trigger pT>1.2TeV

The goal of the challenge was for participants to analyze each box and
|. Decide whether or not it contains new physics

2. Characterize the new physics, if it’s there



LHC Olympics 2020: R&D Dataset

https://doi.org/10.5281/zenodo.2629072

Prior to the challenge, we also released a labeled R&D dataset consisting
of IM QCD dijet events and 100k signal events

q
mx=500 GeV
mz=3.5TeV « q
my=100 GeV



Many new approaches inspired by the
LHC Olympics 2020 Data Challenge

9 groups submitted results on box |

5 groups submitted results on boxes 2 and 3

(A number of additional groups could not finish
the challenge in time but got results on the R&D
dataset, or on the black boxes after unblinding)

Two workshops:

® “Winter Olympics” — special session of
the ML4Jets conference, January 2020,
NYU [box | opened]

® “Summer Olympics” — virtual anomaly
detection mini-workshop, July 2020,
“Hamburg” [boxes 2 & 3 opened]
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The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed),! Benjamin Nachman (ed),?? David Shih (ed),* Oz Amram,’
Anders Andreassen,’ Kees Benkendorfer,?>” Blaz Bortolato,® Gustaaf Brooijmans,’
Florencia Canelli,’ Jack H. Collins,!! Biwei Dai,!2 Felipe F. De Freitas,'3 Barry M.
Dillon,®'* loan-Mihail Dinu,® Zhongtian Dong,'® Julien Donini,'® Javier Duarte,'” D.
A. Faroughy'? Julia Gonski,” Philip Harris,'® Alan Kahn,” Jernej F. Kamenik,®'?
Charanjit K. Khosa,??3 Patrick Komiske,?' Luc Le Pottier,??? Pablo
Martin-Ramiro,??? Andrej Matevc,®!? Eric Metodiev,?! Vinicius Mikuni,'° Inés
Ochoa,?* Sang Eon Park,'® Maurizio Pierini,”®> Dylan Rankin,'® Veronica Sanz,?%:6
Nilai Sarda,?” Uros Seljak,>3!? Aleks Smolkovic,® George Stein,?'? Cristina Mantilla
Suarez,” Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,'®

Louis Vaslin,'® Jean-Roch Vlimant,?° Daniel Williams,° Mikaeel Yunus!®

arxiv: 2101.08320



Many new approaches inspired by the
LHC Olympics 2020 Data Challenge

Individual Approaches

3 Unsupervised

3.1
3.2
3.3
3.4
3.5
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Anomalous Jet Identification via Variational Recurrent Neural Network
Anomaly Detection with Density Estimation

BuHuLaSpa: Bump Hunting in Latent Space

GAN-AE and BumpHunter

Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

Latent Dirichlet Allocation

Particle Graph Autoencoders

Regularized Likelihoods

UCluster: Unsupervised Clustering

4 Weakly Supervised

4.1
4.2

4.3
4.4
4.5

CWoLa Hunting

CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

Tag N’ Train

Simulation Assisted Likelihood-free Anomaly Detection
Simulation-Assisted Decorrelation for Resonant Anomaly Detection

5 (Semi)-Supervised

5.1
5.2
5.3
5.4

Deep Ensemble Anomaly Detection
Factorized Topic Modeling
QUAK: Quasi-Anomalous Knowledge for Anomaly Detection

Simple Supervised learning with LSTM layers

6 Discussion

6.1
6.2

Overall Results
Overall Lessons Learned

arxiv: 2101.08320
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Unsupervised Anomaly Detection

General idea: train ML algorithm directly on (background-
dominated) data to identify outliers [events with low ppg(X)]

Example: Autoencoders

Train lossy ML algorithm to map data to

itself through a compressed latent space.

1.0

0.8

0.6

0.4

0.2

0.0

L

Encoder Decoder

o 4

QCD
t

§ (400 GeV)

1077 10-° 107>
Reconstruction Error

1074

Rare anomalies should be poorly reconstructed

Heimel, Kasieczka, Plehn & Thompson 1808.08979

Farina, Nakai & DS 1808.08992
and many, many more!



Unsupervised Anomaly Detection

VRNN, Kahn et al 2105.09274
Black Box 1: Dijet Mass, EventScore > 0.75

ity BEm Black Box 1

Several successful LHCO2020 approaches were

based on AEs.

2000 3000 4000 5000 7
ij [GeV] 1

#events
S

] N=2000
BuHuLaSpa C--3 N=1000
Bortolato et al 2103.06595
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Weakly-supervised Anomaly Detection

General idea: train ML algorithm to compare two datasets with
different levels of signal, identify events with high pdata(X)/pbg(X)

Example: “Cwola Hunting” [Collins, Howe & Nachman 1805.02664]

SR
105] % — sam | Train a binary classifier on
mw“- L additional features
510 1o X=miji, Mj2, tauzi(ji), tauzi(ji), ...
") SBESIS SB to distinguish between signal
104, : : . region and sideband events.
-

2000 4000 6000 8000 10000
my [GeV]

If additional features are uncorrelated with mjjin the background,
should learn pdaca(X)/pog(x) [Neyman-Pearson lemma]

Z’->XY (boosted), X->7?, Y->7?



Weakly-supervised Anomaly Detection

Another example: Simulation Assisted Likelihood-free Anomaly
Detection (SALAD) [Andreassen, Nachman & DS 2001.05001]

Try to leverage simulated backgrounds for learning pdata(X)/pbg(X):

* reweight bg sim to look like data in sideband region using DCTR method
[Andreassen & Nachman 1907.08209]

* interpolate into SR

* train classifier on data vs bg.

' Sidepand regic?n ;
>\10' "Data" (Pythia) 10F Pythlé
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NN output (Pythia versus Herwig) Signal Region S/B



Between weak and un-supervised

ANOmaly detection with Density Estimation (ANODE):
[Nachman & DS 2001.04990]

Use unsupervised approach to learn the likelihood ratio:

®  Train density estimator to directly learn psr(x) and psg(x)
® |[nterpolate latter in m)] to obtain ppg(x) in the SR

®  Construct likelihood ratio R(x)=pdata(X)/pbg(x) explicitly

sideband signal region
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Between weak and un-supervised

ANOmaly detection with Density Estimation (ANODE):
[Nachman & DS 2001.04990]

Use unsupervised approach to learn the likelihood ratio:

®  Train density estimator to directly learn psr(x) and psg(x)
® |[nterpolate latter in m)] to obtain ppg(x) in the SR

®  Construct likelihood ratio R(x)=pdata(X)/pbg(x) explicitly

| Signal Regiqn Signal Region
104} | 3 | | ' ' ]
Background 25 —— Supervised
103! [1 Signal < CWola (S vs. B)
£ 20] CWola (SR vs. SB) |
102} 3 —— ANODE
8 215' Random
S £
& 2 10|
© 10
©
R
S 5}
(@)
2
O_

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)




Between weak and un-supervised

ANOmaly detection with Density Estimation (ANODE):
[Nachman & DS 2001.04990]

Use unsupervised approach to learn the likelihood ratio:

®  Train density estimator to directly learn psr(x) and psg(x)

° Interpolate latter in mJ] to obtain pug(X) in the SR Can enhance the significance of the
o bump hunt by a factor of up to 7!
®  Construct likelihood ratio R(x)=pdata(X)/pbg(X) explicitly 1.50 (dijet bump hunt)
=> 100 (ANODE-+bump hunt)
| Signal Regiqn Signal Region —
10 Background | 251 —— Supervised -
103! [T Signal % CWola (S vs. B)
£ 207 CWola (SR vs. SB) |
5 ()
102} 2 —— ANODE
2 5 15¢ Random
S £
>
S
@
O_

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency (True Positive Rate)




(Semi)Supervised Anomaly Detection

General idea: train ML algorithm on signal and background
simulation, apply to data to find “signal-like” events

Example: Quasi Anomalous Knowledge (QUAK)
[Park, Rankin, Udrescu, Yunus, Harris 201 1.03550]

—+— Toy Data

------- Background-only Fit

——— Background+Signal Fit

- BlackBox 1

a vl by Ly T Y
8000 3500 4000 4500 5000 5500 6000

| Loss

© m, (GeV)
.(,5; 2D QUAK
Space Train separate autoencoders on signal

models and background model.

Selection

Look for events in data with high background
loss and low signal loss

0,0 Background Loss



Summary and Outlook

* Advances in machine learning are opening up new and exciting
avenues for model independent new physics searches at the LHC.

* The LHC Olympics 2020 provided a very useful testing ground for the
development and common benchmarking of new approaches.

*  Much work remains to be done in order to port these ideas over to
ATLAS and CMS and implement them as actual analyses on real data.

*  We need more ideas for model-independent searches at the LHC.
This is just the beginning!



Current Organization of Physics Analysis Groups at the LHC

B2G / Exotics/
HDBS Exotica

Search
Groups

=

Supporting

organizations
Measurement
Groups

Q: Why is there no model independent search group???




A vision for the future...

Future Organization of Physics Analysis Groups at the LHC??

_ B2G /
Weakly SUprVlsed MOdel H DBS
_ _ Agnostic?
(Semi) Supervised

% Search
Groups
m P Exotics/
Supporting Exotica
organizations
Measurement
Groups

from G. Kasieczka, B. Nachman, DS (eds), et al 2101.08320




Thanks for your attention!



LHC Olympics 2020: R&D Dataset

105; 1 ! Background
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101;— I
2000 4000 6000 8000 10000
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Benchmark S=500, B=500,000, Bsr=61,000
signal strength: S/Bsr~6x10-3, S/\/BSR"‘ | 5



LHC Olympics 2020: R&D Dataset
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Box 1

Signal: 834 events

Z->XY; X,Y->qg .
(same topology as R&D dataset) 732 GeV
mZ' = 3823 GeV X
r 9
mX = 732 GeV
3.8 TeV « 4
mY = 378 GeV Y ™
378 GeV
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ResNet + BDT

PCA

LSTM

High-level features AE
Tag N Train
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Human NN
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Iwo approaches clearly stood out:

Conditional density estimation for anomaly detection
George Stein, Uros Seljak, Biwei Dai, He Jia

BERKELEY CENTER for
COSMOLOGICAL PHYSICS

Used the ANODE method with a
novel density estimator!
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Oz Amram & Cristina Mantilla Suarez (Johns Hopkins)

UNIVERSITY

JOHNS HOPKINS

Used a combination of autoencoders
and CWolLa hunting
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Box 2

No signal! QCD background only.
4 of the 5 submissions found false positives...

Clearly a matter of concern / area of future improvement for anomaly
detection approaches!



B
ox 3 J 2000 events

| 200 events

No jet substructure.

Two decay modes of X resonance. Need to combine to reach
discovery significance.

No approach succeeded in finding the signal.



ANODE: Anomaly Detection with Density Estimation
Nachman & DS 2001.04990

Example of a new approach inspired by LHCO2020.
(See Ben’s talk for additional new approaches!)

Use neural density estimation to directly learn the conditional probability
densities from the data

SN

P(x|data; my; € SR) P(x|data; myy & SR) = P(x|bg; myy ¢ SR)
l interpolate in (x,m]J)
P(Qf‘bg; myyg < SR)

'

P(x|data; c SR
Construct the likelihood ratio: R(ZU) — ;fyx‘zga mmJJE SR))
3 JJ




ANODE: Results on LHCO R&D Dataset

Nachman & DS 2001.04990

Novel aspect of ANODE: can estimate backgrounds directly with P(x|bg.meSR)
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ANODE: Results on LHCO R&D Dataset

Ben Nachman & DS 2001.04990

Can also consider performance on a feature set which is not
independent of m. We introduced artificial correlations just as proof

of concept: My, , — My, +cmyy
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ANODE is robust while CWola completely fails!



