Exploring Uncharted Soft Displaced Vertices in Open Data

Speaker: Daneng Yang (Tsinghua University)

in collaboration with:

Haipeng An, Zhen Hu (Tsinghua University), Zhen Liu (University of Minnesota)

- Long-lived particles in SUSY and LHT
- Analysis strategies
- Data processing
- Vertex reconstruction and signal efficiencies
- Limit contours

Public collision data from http://opendata.cern.ch

Long-lived particles in SUSY and LHT

Displaced vertex is a novel feature distinguishable from SM backgrounds

- Feeble couplings: RPV SUSY, Hidden sector models, freeze-in
- Heavy mediators: RHv
- Phase space squeezing: Nearly degenerate states (Focus of this study)

https://indico.cern.ch/event/607314/contributions/2542309/attach ments/1447873/2231444/20170424_LLPs.pdf

Review: https://arxiv.org/pdf/1903.04497.pdf

Long-lived particles in SUSY and LHT

Generic requirements:

- Small mass splitting
- Z2 symmetry: the LSP fly outside the detector
- SM partners: the NLP should decay into the LSP + some SM particles

Natural models:

$$c\tau_{\tilde{t}} \approx 1.4 \text{ mm} \left(\frac{\text{m}_{\tilde{t}}}{500 \text{ GeV}}\right) \left(\frac{20 \text{ GeV}}{\Delta}\right)^8$$

$$c\tau_{t_H} \approx 7.4 \text{ mm} \left(\frac{m_{t_H}}{500 \text{ GeV}}\right) \left(\frac{40 \text{ GeV}}{\Delta}\right)^{10}$$

Bonus

Lightest stable particle provides a DM candidate Coannihilation avoids DM being over-abundant

Analysis strategies

Generic collider features

- A pair of displaced vertices
- Each associated to some soft tracks

Challenges

- Hundreds of soft tracks
- Fake and mis-associated tracks

Strategy

- > PF MET trigger
- Monojet
- Global displaced vertex reconstruction based on displaced tracks

Data processing

- Dataset: CMS 2012 MET primary dataset Run B, Run C, integrated luminosity 11.6 fb⁻¹
- CMSSW 5.3.32 with build-in tools from the Docker image
- Trigger: PFMET > 150 GeV
- +Preselection: at least one jet pT > 150 GeV
- local sample size ~300 G

Offline analysis

- > Track based analysis
- Beam spot correction
- > Trimmed Kalman Vertex Finder
- > Compute signal efficiency table

Vertex reconstruction and signal efficiencies

Signal samples

- MG5_aMC@NLO+Pythia8
- MLM 1+2 jets matching
- Fastjet3 for jet clustering
- Simulate stop/tH decay vertices based on the their widths, and the Pythia R-hadron decay program.

CMS detector simulation?

- Parametrize signal efficiencies for the MC samples
- Track efficiencies
- Vertex reconstruction efficiencies

Track selection and efficiencies

Track selections

$$p_T > 1 \text{ GeV} |\eta| < 2.4$$

Track efficiencies

Reco: 90%

$$\varepsilon(|d_{xy}/\sigma_{d_{xy}}| > 4) = \frac{N(\sigma_{d_{xy}} < |d_{xy}^0|/4|p_T^0)}{N(\sigma_{d_{xy}} > 0|p_T^0)}$$

Zero refers to the quantities of a sample of high fidelity tracks.

Vertex reconstruction and signal efficiencies

Parametrized vertex efficiencies for phenomenological studies

- Signal like events from the CMS ttbar sample
 - Generator level B_0 , \bar{B}_0 hadronic decays
 - Energy in the range 10-30 GeV
 - Vertex position from the beam-line: 0.5-18 mm
- > Two methods to cross check
 - Track fraction method
 - Vertex distance method
- $igoplus d_{BV}$ from 0.1 to 20 mm

Catalog	$N_{aen.tk} = 2$	$N_{aen.tk} = 3$	$N_{aen.tk} = 4$	$N_{aen.tk} = 5$	$N_{aen.tk} \ge 6$
Efficiency from TF (%)	23.8 ± 0.4	36.6 ± 1.0	46.1 ± 2.9	45.3 ± 6.2	32.4 ± 10.8
Efficiency from VD (%)	17.5 ± 0.3	25.7 ± 1.0	32.6 ± 2.4	32.6 ± 5.0	40.5 ± 12.4
Overlapping fraction (%)	59.7	62.0	64.3	70.5	83.3
Vertex error (μm)	173	170	164	175	155
Vertex error RMS (μm)	110	110	103	119	94.5
Probability of passing $N_{vtx,tk} \ge 2$	1.0	1.0	1.0	1.0	1.0
Probability of passing $N_{+++} > 3$	0.61	0.78	0.83	0.82	0.83
Probability of passing $N_{vtx,tk} \ge 4$	0.23	0.39	0.54	0.64	0.58

Vertex reconstruction and signal efficiencies

We have limited data and cannot fully explore signal features

Selection	Data	Signal BM
MET primary	4.3×10^{7}	-
$p_{\rm T}^{j1} > 150 \text{ GeV}, E_{\rm T}^{\rm miss} > 150 \text{ GeV}$	1.4×10^{6}	830
One displaced vertex $(N_{vtx,tk} \ge 2)$	3.7×10^{5}	310
One displaced vertex $(N_{vtx,tk} \ge 3)$	4.7×10^4	240
One displaced vertex $(N_{vtx,tk} \ge 4, \text{ default})$	5.5×10^{3}	140
Two displaced vertices	76	9.8
$p_{\rm T}^{j1} > 300 \text{ GeV}, E_{\rm T}^{\rm miss} > 300 \text{ GeV}$	1	3.0
Two displaced vertices with vertex $H_{\rm T} < 40$	0	3.0

Limit contours: SUSY stop-bino model

Our results (stop-bino model)

- 8 TeV 11.6 fb⁻¹
- Most sensitive in the compressed region
- Continuously transits into prompt analysis

Prompt CMS

- 8 TeV 19.7 fb⁻¹
- $ilde{t} o b l ar{l} ilde{\chi}^0_1$ channel
- Truncated at $c\tau$ =0.2 mm

Limit contours: SUSY stop-bino, comparing with 13 TeV limits

Our results (stop-bino model)

- 8 TeV 11.6 fb⁻¹
- Most sensitive in the compressed region
- Continuously transits into prompt analysis

Prompt CMS

- 13 TeV 35.9 fb^{-1}
- $\tilde{t} \to bff'\tilde{\chi}^0_1$ channel, MVA approach
- Truncated at $c\tau$ =0.2 mm

Limit contours: LHTtH decay model

Our results (LHT model)

- 8 TeV 11.6 fb⁻¹
- Most sensitive in the compressed region
- Continuously transits into prompt analysis

Prompt CMS

- 8 TeV 19.7 fb⁻¹
- Converted from stopbino limits
- Truncated at cτ=0.2 mm

- Displaced vertices reconstructed from soft tracks can be sensitive to BSM longlived particles
- We searched for long-lived stop and tH signals using the 8 TeV CMS open data
- We present competitive limits in the compressed region for both of the models
- Opendata can be a powerful tool to help theorists study backgrounds of non-conventional new physics searches

SUMMARY