Higgsino Dark Matter in Electron Electric Dipole Moments

Pheno 2021, 5/25/2021

Ben Sheff – University of Michigan

Based on work in collaboration with Raymond Co – University of Minnesota, James Wells – University of Michigan

Why Dark Matter

credit to NASA's Goddard Space Flight Center https://svs.gsfc.nasa.gov/12307

By Mario De Leo - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=74398525

Why Higgsino Dark Matter

- Most of the advantages of SUSY, with very few parameters
 - Gauge coupling unification
 - Electroweak scale stabilization
- Unify scalar masses and give SUSY breaking gaugino masses by anomaly to reduce to 3 degrees of freedom
 - $-M_{2}, \mu, m_{3/2}$

The Model, Split SUSY

$$-\mathcal{L}_{\text{eff}} = \frac{M_2}{2}\tilde{W}^a\tilde{W}^a + \frac{M_1}{2}\tilde{B}\tilde{B} + \mu\tilde{H}_u\epsilon\tilde{H}_d + \frac{H^{\dagger}}{\sqrt{2}}\left(\tilde{g}_u\sigma^a\tilde{W}^a + \tilde{g}'_u\tilde{B}\right)\tilde{H}_u + \frac{H^T\epsilon}{\sqrt{2}}\left(\tilde{g}_d\sigma^a\tilde{W}^a + \tilde{g}'_d\tilde{B}\right)\tilde{H}_d + h.c.$$

- Decouple scalars
 - Masses set to $m_{3/2} = O(PeV)$

Wells hep-ph/0411041

- Anomaly generated gaugino masses
 - M_3 ≈ 10 M_2 ≈ 3 M_1

 $- m_{3/2} \sim 300 M_2$

Randall, Sundrum hep-th/9810155

- Higgsino DM as WIMP DM
 - Standard freeze-out WIMP scenario
 - Mass set to m_{DM} ~ μ ≈ 1.2 TeV

Profuno, Yaguna hep-ph/0407036

Limited Accessibility to Usual Approaches

- Colliders are very limited for heavy, non-colored particles
- Direct detection cross section falls rapidly as the higgsinogaugino mixing angle
- Indirect detection has limited reach on higgsino mass
 - CMB measurements limited to O(100 GeV)
 - CTA can reach near $\mu = 1 \text{ TeV}$

Electron Electric Dipole Moments

- SUSY is well understood
 - Generically has large complex phases
 - Lead to charge parity violations
- Very little background to worry about
 - Electron EDM can come from SUSY charge parity breaking
 - In SM it's at most ~10⁻³⁸ e cm
 - Current limit is at 1.1 x 10⁻²⁹ e cm

Scale reference for EDM:

Water: 3.9 x 10⁻⁹ e cm

Naïve neutron: 4 x 10⁻¹⁴ e cm

Neutron limit: 10⁻²⁶ e cm

What's going on in the SM?

- Need to involve CKM matrix
 - Need all three doublets involved
- 3 loop diagrams are all that work

What about SUSY?

- CP phase can be large
- Limit can be (for O(1) phases)

M_{SUSY} > 10 TeV Cesarotti, et al. 1810.07736

Electron EDM in Split SUSY

- Heavy scalars suppresses previous slide loops
- No 1 loop EDM
 - Non-trivial to find CP phase that can't be absorbed
 - Move to two loop

Barr-Zee Diagram

Leading order diagrams for EDM

 M_2 , $\mu >> m_Z$ gives:

$$\begin{split} d_{\gamma h} &\simeq \frac{-e \alpha m_e}{8 \pi^3} \frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{\gamma h} \left(\frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2} \right) \\ d_{Z h} &\simeq \frac{e \left(4 \sin^2 \theta_W - 1 \right) \alpha m_e}{32 \pi^3 \cos^2 \theta_W} \frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{Z h} \left(\frac{m_Z^2}{m_h^2}, \frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2} \right) \\ d_{W W} &\simeq \frac{-e \alpha m_e}{32 \pi^3 \sin^2 \theta_W} \left(\frac{\tilde{g}_u \tilde{g}_d}{M_2 \mu} \sin \phi_2 F_{W W}^{(2)} \left(\frac{M_2^2}{\mu^2}, \frac{M_2 \mu}{m_h^2} \right) + \frac{\tilde{g}_u' \tilde{g}_d'}{M_1 \mu} \sin \phi_1 F_{W W}^{(1)} \left(\frac{M_1^2}{\mu^2}, \frac{M_1 \mu}{m_h^2} \right) \right) \end{split}$$

DOI: 10.1038/s41586-018-0599-8

How to measure EDM: ACME II

- Precession of EDM in a strong electric field
 - Field inside ThO molecule is one of the strongest known: 80 GV/cm
- Propagate molecules through shielded chamber
 - Known time-of-flight
 - excite electron to particular spin angle in xy-plane at start
 - measure final angle with fluorescence by linearly polarized laser
- Current measurements at 1.1 x 10⁻²⁹ e-cm

By Mario De Leo https://commons.wikimedia.org/wiki/File: Precession_in_magnetic_field.svg

https://www.danielang.net/2016/10/16/guide-to-the-acme-edm-experiment-a-simple-overview/

EDM Results

- Current limits confined to low tanβ or low (M₂μ)
- Advanced ACME expected to be an order of magnitude more sensitive
 - Would reach, for μ = 1.2 TeV, M2 ~ O(10 TeV), tanβ ~ O(10)
 covering our region of interest

Results in Context

- A bit of a race between approaches
 - LZ could significantly increase DD limits, but limited by M_2^2 scaling
 - CTA can have reach in ID search, dependent on astrophysical unknowns
 - e-EDM reach is fairly robust
 - Up to complex phase or large M₂

Thank you!

Office of Science

Line photon indirect detection searches

