

Searches for strong production of supersymmetric particles with the ATLAS detector

Yang Liu On behalf of the ATLAS Collaboration

Nanjing University & Institute of High Energy Physics

yang.l@cern.ch May 26 2021

Motivation:

- Despite the huge success of the SM theory, physics beyond SM is strongly motivated:
 - hierarchy problem, dark matter, quantum description of gravity, the GUT e.t.c...
- Supersymmetry (SUSY) extend the SM and connect SM Fermions & Bosons with their super partner into a set of super-multiplets
 - Solving hierarchy problem if only soft breaking of supersymmetry (mass constraint within TeV scale, could be produced in the LHC)
 - Provide stable DM candidate (Lightest-SUSY-Particle) if R-parity is conserving (RPC)

$$P_R = (-1)^{3B + L + 2S}$$

 Including graviton & gravitino needed for the GUT...

Status of SUSY search in ATLAS:

- ~40 analysis teams covering all aspects of SUSY scenarios and models including Strongly produced SUSY, EWK produced SUSY, RPC, RPV and LLP...
 - This talk will only cover the latest searches of strong production of gluino or squark^{3rd} in RPC or RPV scenarios
 - SUSY searches in EWK and LLP will be covered by Batool's talk and Jackson's talk
- Four main strong production mechanisms at LHC:

ATLAS

- Strong production of SUSY has relatively large production cross-sections which could probe higher mass regions but comes with more bkg contamination
- Only simplified models are used considering a few particles and decoupling the other to higher scale

Status of Strong SUSY search in ATLAS:

- * With R-parity conserving, the LSP is stable and only interacting weakly with others, providing a suitable candidate of DM (WIMP) and large E_T^{miss} as signature
- * With R-parity violated, the LSP could decay to SM particles via RPV sector leaving less E_T^{miss} and SM particles in the final state:

$$W = W_{MSSM} + W_R; \quad W_R = \frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \frac{1}{2}\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$$

This talk will cover:

General strategy on Strong SUSY searches:

Finding signal regions

- Dedicated SRs are designed for targeting signal models to enhance the signal sensitivity
- Different sets of SRs are designed to target at different phase space (e.g: boost, compressed)
- "Multi-bin" strategy is applied to maximize the exclusion power
- Best CLs value for each point are chosen from those inclusively SRs

Statistical interpretations

- With estimations of BKGs and data events in SRs, excess or agreement could be seen
- 95% CLs exclusion limits will be drawn for targeted models on phase space if there is no excess observed

BKG estimations

- Dominant bkgs:
 - Estimated directly from data events in control regions (CRs):
 - Data-Driven (DD) methods e.g: ABCD, MxM and FakeFactor methods
 - Corrected by data in CRs
 - Estimations will be validated by comparing to data events in validation regions
- Minor bkgs: Estimated directly via MC simulations

Systematics estimations

Experimental uncertainties:

- Uncertainties coming from the imperfection of the simulation, obtained by all kinds of correction factors e.g: Lumi, pileup ...
- Uncertainties coming from DD estimation methods
- Theoretically uncertainties:
 - Uncertainties coming from the parameter choices of used MC sample e.g: renormalization and factorization scales, PDF ...

Search $\tilde{b}_1 \tilde{b}_1$ with $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ in 2b+ E_T^{miss} final state:

arXiv: 2101.12527 (sub to JHEP)

Signal regions are designed for probing compressed & boosted regions separately:

- SRA: Aiming @ boosted region, $m_{CT} \& m_{eff}$ is used for multi-bin strategy. Z+Jets dominant
- ▶ SRB: Aiming @ $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) \le 200 \text{ GeV}$, BDT technique is applied, w_{XGB} is used for multi-bin strategy. Z+Jets dominant
 - SRC: Aiming @ $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) \leq 50 \ GeV$, boosted ISR Jet as signature, soft b-tagging is used to enhance the low-pt bJets sensitivity, E_T^{miss} is used for multi-bin. V+Jets & Top dominant

Dominant bkg corrected by data in CRs

Search $\tilde{b}_1 \tilde{b}_1$ with $\tilde{b}_1 \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$ in $2\tau 2b + E_T^{miss}$ final state:

Search $\tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ in 2LOS + E_T^{miss} final state:

- Signal model:
 - ² 2-body (on-shell Top), 3-body (on-shell W) and 4-body (off-shell W) cases probed separately
- $SR^{2-body}, SR_t^{3-body}, SR_W^{3-body}, SR_{small\Delta m}^{4-body}, SR_{large\Delta m}^{4-body}:$
 - Binned with leptons flavor (and m_{T2}^{ll}) for 3-body (2-body) SRs to maximize the exclusion power

Standard Model

tt

Z+jets

Signal Regions

Data

tt Z

Wt

Others

Diboson FNP

ກ(_{ັ້ນ1}) [GeV]

Significa

- t \overline{t} , $t\overline{t}Z$ dominant in 2 and 3-body case
- Extra large contributions from VV for 3 and 4-body case

√s = 13 TeV, 139 fb⁻¹

 $CR^{2 \cdot b_{ody}}_{it}CR^{2 \cdot b_{ody}}_{itz}VR^{2 \cdot b_{ody}}_{it,SF}VR^{2 \cdot b_{ody}}_{it,SF}VR^{2 \cdot b_{ody}}_{itz}SR^{2 \cdot b_{ody}}SR^{2 \cdot b_{ody}}_{itz}SR^{2 \cdot b_{ody}}SR^{2 \cdot b_{ody}}_{itz}SR^{2 \cdot b_{ody}}SR^{2 \cdot b_{ody}}_{itz}R^{2 \cdot b_{ody}}SR^{2 \cdot b_{ody}}_{itz}SR^{2 \cdot b_{o$

2-body selection

FNP estimated via FakeFactor method

Validation Regions

Dominant bkgs are corrected in CRs by data

ATLAS

Events

10³

10²

10

1.2

0.8

¢μ π

Control

Search $\tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \to \tilde{\tau} b \nu, \tilde{\tau} \to \tau \tilde{G}$ in 1-2 τ +2Jets/1b+ E_T^{miss} final state:

Signal model:

- $\tilde{t}_1 \tilde{t}_1$ productions with cascade decay (off-shell $\tilde{\chi}^{\pm}$)
- ${}^{\bullet}$ Massless \tilde{G} as LSP motivated by GMSB and nGM
- Complementary model comparing to $\tilde{t} \rightarrow t \tilde{\chi}_1^0$
- Signal regions:
 - ${}^{\bullet}$ Di-Tau SR: compressed region with soft b and boost τ

- Dominant by $t\bar{t}$ and single-Top process
 - Corrected by data in CRs
 - Results:
 - No significant excess observed
 - Extends previous exclusion limits
 - $m(\tilde{t}) \le 1.3 \ TeV$ has been excluded
- Single-Tau SR: boost region with boost b and soft τ , $P_T(\tau)$ bins used to maximum sensitivity
- Statistically combined to maximize the exclusion power

Search $\tilde{g}\tilde{g}$ and $\tilde{t}\tilde{t}$ in RPV with \geq 1L+Jets final state:

- No fundamental theoretical reason for R-parity conservation
- Signal model:
 - $B(\tilde{t} \to t \tilde{\chi}_{1,2}^0)$ and $B(\tilde{g} \to t \bar{t} \tilde{\chi}_1^0)$ are varied according to LSP's type (pure wino, bino or higgsino)
 - RPV couplings: Strong enough to decay promptly, weak enough to disentangled with RPC mixture
 - * λ_{323}'' : dominant under the minimal flavor violation hypothesis
 - λ' : to be complementary for light-quark case

Jet counting analysis discovery SRs				
Jet $p_{\rm T}$ threshold	Number of jets	Number of jets	Number of h jets	
	1ℓ category	$2\ell^{\rm sc}$ category	Number of 0-jets	
$20 \mathrm{GeV}$	≥ 15	≥ 10	$=0, \geq 3$	
$40 {\rm GeV}$	≥ 12	≥ 8	$=0,\geq 3$	
$60 {\rm GeV}$	≥ 11	≥ 7	$=0, \geq 3$	
$80 {\rm GeV}$	≥ 10	≥ 7	$=0, \geq 3$	
$100 {\rm GeV}$	≥ 8	≥ 6	$=0,\geq 3$	

- Events are split into 2LSS case ($2l^{SC}$) and other case (1l dominated)
- Statistical combined for two categories and number of b-jets bins
- Best CLs are chosen for inclusive SRs for each signal points to maximize the exclusion power

Search $\tilde{g}\tilde{g}$ and $\tilde{t}\tilde{t}$ in RPV with \geq 1L+Jets final state:

BKG estimation:

- W/Z + jets dominant for bVeto and $t\bar{t}$ for b-jet required regions for 1l category
- VV dominant for bVeto and $t\bar{t}X^{SC}$ for b-jet required regions for $2l^{SC}$ category
- Large uncertainties for high jet multiplicity, $N_{i,b}^{process}$ estimated from low-jet case which is corrected by data
- FNP: MxM for 1l category, covered by $t\bar{t}X^{SC}$ in $2l^{SC}$ category
- Other minor bkg estimated via MC simulation directly

Conclusions:

- Strong SUSY searches in ATLAS have covered wide range of scenarios including both RPC and RPV and also long-lived gluino and squarks (will be covered by Jackson's talk)
- Lots of results coming out recently from searching for squark^{3rd} and gluino for direct decay or cascade decay in multiple channels
- Unfortunately, no significant excess observed yet
- Greatly extends the sensitivity to gluino and squarks under many different decay modes and assumptions

Back Ups

Search $\tilde{b}_1 \tilde{b}_1$ with $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ in 2b+ E_T^{miss} final state:

Search $\tilde{b}_1 \tilde{b}_1$ with $\tilde{b}_1 \to b \tilde{\chi}_2^0 \to b h \tilde{\chi}_1^0$ in $2\tau 2b + E_T^{miss}$ final state:

$ \begin{array}{c c} \hline N_{\tau} + N_{\mu} & \geq 1 \\ N_{jets} & \geq 3 \\ p_{T}(jet_1) & > 140 \text{GeV} \\ p_{T}(jet_2) & > 100 \text{GeV} \end{array} \end{array} \qquad \Theta_{\min} = \min_{i=1,\ldots,4} (\Theta_i) $	$TF_{Top} = \underbrace{CR_Top_\tau_{true}}_{t \qquad \psi \qquad q} \\ CR_Top_\mu \qquad \psi_{\mu} \qquad \psi_{\mu}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TF_{z} = \frac{0 b - jet}{CR_{z} - \tau \tau 0 b} \tau$ $TF_{z} = \frac{0 b - jet}{CR_{z} - \mu \mu 0 b} \mu$ $TF_{z} = \frac{0 b - jet}{CR_{z} - \mu \mu 0 b} \mu$
$\frac{\text{Single-bin SR}}{\Theta_{\text{min}}} > 0.6 \qquad 3 \text{ bins: } < 0.5 \ [0.5 \ 1.0] > 1.0 \text{ increasing with } \Delta m(\tilde{\chi}_{0}^{0}, \tilde{\chi}_{1}^{0})$	$\begin{array}{c} \text{st} 600 \\ \hline \text{ATLAS} \\ \hline \text{S} 500 \\ \hline \text{Vs} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \\ \hline \text{Top } \mu \tau \\ \hline \text{Top } \mu \tau \\ \hline \text{Top } \mu \tau \\ \hline \text{Top } \pi \tau \\ \hline \ \ \ \text{Top } \pi \tau \\ \hline \ \ \ \ \text{Top } \pi \tau \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$400 = Post-fit = Z(\mu\mu) = Other = Oth$

Significan 5⁻0

VR_Z_µµ2b

VR_Top_ττ

VR_Top_μτ_{true} VR_Top_μτ_{fake}

Search $\tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ in 2LOS + E_T^{miss} final state:

	and the same same bill in the same same				
	$\mathrm{SR}^{\mathrm{3-body}}_W$		$\mathrm{SR}_t^{\mathrm{3-body}}$		
Leptons flavour	DF	\mathbf{SF}	DF	\mathbf{SF}	
$p_{\rm T}(\ell_1) ~[{\rm GeV}]$	> :	25	> 25		
$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	> 20		> 20		
$m_{\ell\ell} \; [\text{GeV}]$	> 20		> 20		
$ m_{\ell\ell} - m_Z $ [GeV]	_	> 20	-	> 20	
n_{b-jets}	= 0		≥ 1		
$\Delta \phi_{\beta}^{\mathrm{R}}$ [rad]	> 2.3		> 2.3		
$E_{\rm T}^{\rm miss}$ significance	> 12		> 12		
$1/\gamma_{ m R+1}$	> 0.7		> 0.7		
$R_{p_{\mathrm{T}}}$	> 0.78		> 0.70		
$M^{\rm R}_{\Delta} [{ m GeV}]$	> 105		> 120		

- SR_W^{3-body} : for $\Delta m(\tilde{t}, \tilde{\chi}_1^0) \sim m(W)$ (SR_W^{3-body})
- SR_t^{3-body} : for $\Delta m(\tilde{t}, \tilde{\chi}_1^0) \sim m(t)$ (SR_t^{3-body})
- * "super-razor" vars and separated via lepton flavor to maximize sensitivity

	SR ^{2-body}			
Leptons flavour	DF SF			
$p_{\rm T}(\ell_1) \; [{\rm GeV}]$	> 25			
$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	> 20			
$m_{\ell\ell} \; [\text{GeV}]$	> 20			
$ m_{\ell\ell} - m_Z \; [\text{GeV}] \; $	- > 20			
n_{b-jets}	≥ 1			
$\Delta \phi_{\text{boost}}$ [rad]	< 1.5			
$E_{\rm T}^{\rm miss}$ significance	> 12			
$m_{{\scriptscriptstyle {\rm T2}}}^{\ell\ell} \; [{\rm GeV}]$	> 110			

- Multi-bin strategy is applied to maximum the exclusion power:
 - Binned with lepton flavors & m_{T2}^{ll}

	$\mathrm{SR}^{\mathrm{4-body}}_{\mathrm{Small}\Delta m}$	$\operatorname{SR}^{4-\operatorname{body}}_{\operatorname{Large}\Delta m}$			
$p_{\rm T}(\ell_1) \; [{\rm GeV}]$	< 25	< 100			
$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	< 10	[10, 50]			
$m_{\ell\ell} \; [{\rm GeV}]$		> 10			
$p_{\rm T}(j_1)$ [GeV]		> 150			
$\min \Delta R_{\ell_2, j_i}$		>1			
$E_{\rm T}^{\rm miss}$ significance	> 10				
$p_{\mathrm{T,boost}}^{\ell\ell}$ [GeV]		> 280			
$E_{\rm T}^{\rm miss}$ [GeV]		> 400			
$R_{2\ell}$	> 25	> 13			
$R_{2\ell 4j}$	> 0.44	> 0.38			

- Boosted ISR Jet signature is used
- Compatible low-pT considered
- Crthogonal SRs for different Δm regions

Search $\tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ in 2LOS + E_T^{miss} final state:

Search $\tilde{t}_1 \tilde{t}_1$ with $\tilde{t}_1 \to \tilde{\tau} b \nu, \tilde{\tau} \to \tau \tilde{G}$ in 1-2 τ +2Jets/1b+ E_T^{miss} final state:

LSP	Branching ratios for sparticle:				Cross-section [fb]			
type	stop		gluino			for direct production		
	$t\tilde{\chi}^0_{1,2}$	$b \tilde{\chi}_1^{\pm}$	$tt\tilde{\chi}^0_{1,2}$	$bb ilde{\chi}^0_{1,2}$	$tb\tilde{\chi}_1^{\pm}$	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^0$	$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$	$ ilde{\chi}_2^0 ilde{\chi}_1^0$
Bino	100%	0%	100%	0%	0%	0	0	0
Wino	33%	66%	16%	16%	66%	387	0	0
Higgsino	50%	50%	50%	0%	50%	91	91	52

BKG estimation:

- Dominant by $t\bar{t}$ and single-Top process:
 - * True contributions: 2 real τ and 1 real τ for Di-Tau and Single-Tau channel
 - Fake contributions: 1 real τ and no real τ from single-Top for Di-Tau and Single-Tau channel
 - CRs and VRs for each source separately to correct and validate the estimations
- Others estimated via MC samples

Search $\tilde{g}\tilde{g}$ and $\tilde{t}\tilde{t}$ in RPV with \geq 1L+Jets final state:

Jet multiplicity prediction:

$$r^{X}(j) \equiv N_{j+1}^{X}/N_{j}^{X}, \text{ with } r^{X}(j) = c_{0}^{X} + c_{1}^{X}/(j+c_{2}^{X}) \Rightarrow N_{j}^{X} = N_{4}^{X} \cdot \prod_{j'=4}^{j'=j-1} r^{X}(j')$$

B-jet multiplicity prediction: $N_{j,b}^X = f_{j,b}^X \cdot N_j^X$ with $\sum_b f_{j,b}^X = 1$ and known N_j^X

 $f_{(j+1),b} = f_{j,b} \cdot x_0 + f_{j,(b-1)} \cdot x_1 + f_{j,(b-2)} \cdot x_2$, with $f_{4,b}$ as initial template

THE END

