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Motivation:

2

‣ Despite the huge success of the SM theory, physics 
beyond SM is strongly motivated:


‣ hierarchy problem, dark matter, quantum 
description of gravity, the GUT e.t.c…


‣ Supersymmetry (SUSY) extend the SM and connect 
SM Fermions & Bosons with their super partner into a 
set of super-multiplets 


‣ Solving hierarchy problem if only soft breaking of 
supersymmetry (mass constraint within TeV scale, 
could be produced in the LHC)


‣ Provide stable DM candidate (Lightest-SUSY-
Particle) if R-parity is conserving (RPC)


                               


‣ Including graviton & gravitino needed for the 
GUT…

PR = (−1)3B+L+2S
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Status of SUSY search in ATLAS:
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‣ ~40 analysis teams covering all aspects of SUSY scenarios and models including 
Strongly produced SUSY, EWK produced SUSY, RPC, RPV and LLP…


‣ This talk will only cover the latest searches of strong production of gluino or 
squark   in RPC or RPV scenarios


‣ SUSY searches in EWK and LLP will be covered by Batool’s talk and Jackson’s talk

3rd

‣ Four main strong production mechanisms at LHC:





‣ Strong production of SUSY has relatively large production 
cross-sections which could probe higher mass regions but 
comes with more bkg contamination


‣ Only simplified models are used considering a few particles 
and decoupling the other to higher scale



Status of Strong SUSY search in ATLAS:
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‣ With R-parity conserving, the LSP is stable and only interacting weakly with others, providing a suitable candidate of DM (WIMP) and large  as 
signature


‣ With R-parity violated, the LSP could decay to SM particles via RPV sector leaving less  and SM particles in the final state:


                                                    


‣ This talk will cover:
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General strategy on Strong SUSY searches:
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Finding signal regions

‣ Dedicated SRs are designed for targeting signal models to 

enhance the signal sensitivity


‣ Different sets of SRs are designed to target at different phase 
space (e.g: boost, compressed)


‣ “Multi-bin” strategy is applied to maximize the exclusion power 


‣ Best CLs value for each point are chosen from those inclusively 
SRs

BKG estimations

‣ Dominant bkgs: 


‣ Estimated directly from data events in control regions (CRs): 


‣ Data-Driven (DD) methods e.g: ABCD, MxM and 
FakeFactor methods


‣ Corrected by data in CRs


‣ Estimations will be validated by comparing to data events 
in validation regions


‣ Minor bkgs: Estimated directly via MC simulations

Systematics estimations

‣ Experimental uncertainties:


‣ Uncertainties coming from the imperfection of the simulation, 
obtained by all kinds of correction factors e.g: Lumi, pileup …


‣ Uncertainties coming from DD estimation methods


‣ Theoretically uncertainties:


‣ Uncertainties coming from the parameter choices of used MC 
sample e.g: renormalization and factorization scales, PDF …

Statistical interpretations

‣ With estimations of BKGs and data events in SRs, 

excess or agreement could be seen


‣ 95% CLs exclusion limits will be drawn for targeted 
models on phase space if there is no  excess observed
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‣ Signal regions are designed for probing compressed & boosted regions separately:


‣ SRA: Aiming @ boosted region,   &  is used for multi-bin strategy. Z+Jets dominant


‣ SRB: Aiming @ , BDT technique is applied,   is used for multi-bin 
strategy. Z+Jets dominant


‣ SRC: Aiming @ , boosted ISR Jet as signature, soft b-tagging is used to 
enhance the low-pt bJets sensitivity,    is used for multi-bin. V+Jets & Top dominant


‣ Dominant bkg corrected by data in CRs
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arXiv: 2101.12527 (sub to JHEP)

https://arxiv.org/abs/2101.12527
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Search  with  in 2LOS +  final state:t̃1t̃1 t̃1 → tχ̃0
1 Emiss

T
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‣ Signal model:


‣ 2-body (on-shell Top), 3-body (on-shell W) and 4-body (off-shell W) cases probed 
separately


‣ , , , , :


‣ Binned with leptons flavor (and ) for 3-body (2-body) SRs to maximize the exclusion 
power


‣ ,  dominant in 2 and 3-body case


‣ Extra large contributions from VV for 3 and 4-body case


‣ FNP estimated via FakeFactor method


‣ Dominant bkgs are corrected in CRs by data
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Search  with  in 1-2 +2Jets/1b+  final state:t̃1t̃1 t̃1 → τ̃bν, τ̃ → τG̃ τ Emiss
T
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‣ Signal model:


‣  productions with cascade decay (off-shell )


‣ Massless  as LSP motivated by GMSB and nGM 


‣ Complementary model comparing to 


‣ Signal regions:


‣ Di-Tau SR: compressed region with soft b and boost 


‣ Single-Tau SR: boost region with boost b and soft ,  bins used to maximum sensitivity


‣ Statistically combined to maximize the exclusion power

t̃1t̃1 χ̃±

G̃

t̃ → tχ̃0
1

τ

τ PT(τ)

‣ Dominant by  and single-Top 
process


‣ Corrected by data in CRs


‣ Results:


‣ No significant excess observed


‣ Extends previous exclusion limits


‣  has been 
excluded

t t̄

m(t̃ ) ≤ 1.3 TeV

ATLAS-CONF-2021-008 

https://cds.cern.ch/record/2759282


Search  and  in RPV with 1L+Jets final state:g̃g̃ t̃ t̃ ≥
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‣ No fundamental theoretical reason for R-parity conservation


‣ Signal model:


‣  and  are varied according to LSP’s 
type (pure wino, bino or higgsino)


‣ RPV couplings: Strong enough to decay promptly, weak 
enough to disentangled with RPC mixture


‣ : dominant under the minimal flavor violation 
hypothesis 


‣ : to be complementary for light-quark case
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‣ Events are split into 2LSS case ( ) and other 
case (  dominated)


‣ Statistical combined for two categories and 
number of b-jets bins


‣ Best CLs are chosen for inclusive SRs for each 
signal points to maximize the exclusion power

2lSC

1l

ATLAS-CONF-2021-007 

http://cdsweb.cern.ch/record/2759281


Search  and  in RPV with 1L+Jets final state:g̃g̃ t̃ t̃ ≥
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‣ BKG estimation:


‣  dominant for bVeto and  for b-jet required regions for  category


‣ VV dominant for bVeto and  for b-jet required regions for  category


‣ Large uncertainties for high jet multiplicity,  estimated from low-jet case which is corrected by data


‣ FNP: MxM for  category, covered by  in  category


‣ Other minor bkg estimated via MC simulation directly
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Conclusions:
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‣ Strong SUSY searches in ATLAS have covered wide range of 
scenarios including both RPC and RPV and also long-lived gluino 
and squarks (will be covered by Jackson’s talk)


‣ Lots of results coming out recently from searching for squark   
and gluino for direct decay or cascade decay in multiple channels


‣ Unfortunately, no significant excess observed yet


‣ Greatly extends the sensitivity to gluino and squarks under many 
different decay modes and assumptions

3rd
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Search  with  in 2LOS +  final state:t̃1t̃1 t̃1 → tχ̃0
1 Emiss
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Leptons flavour DF SF
pT(`1) [GeV] > 25
pT(`2) [GeV] > 20
m`` [GeV] > 20

|m`` �mZ | [GeV] – > 20
nb�jets � 1
��boost [rad] < 1.5
Emiss

T significance > 12

m``
T2 [GeV] > 110

SR3�body
W SR3�body

t

Leptons flavour DF SF DF SF
pT(`1) [GeV] > 25 > 25
pT(`2) [GeV] > 20 > 20
m`` [GeV] > 20 > 20

|m`` �mZ | [GeV] – > 20 – > 20
nb�jets = 0 � 1
��R

� [rad] > 2.3 > 2.3
Emiss

T significance > 12 > 12
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pT(`1) [GeV] < 25 < 100
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‣ Multi-bin strategy is applied to maximum the exclusion power:


‣ Binned with lepton flavors & mll
T2

‣ : for  ( )


‣ : for  ( ) 


‣ “super-razor” vars and separated via lepton flavor to maximize sensitivity

SR3−body
W Δm(t̃, χ̃0

1) ∼ m(W ) SR3−body
W

SR3−body
t Δm(t̃, χ̃0

1) ∼ m(t) SR3−body
t

‣ Boosted ISR Jet signature is used


‣ Compatible low-pT considered


‣ Orthogonal SRs for different  regionsΔm



Search  with  in 2LOS +  final state:t̃1t̃1 t̃1 → tχ̃0
1 Emiss

T
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Search  with  in 1-2 +2Jets/1b+  final state:t̃1t̃1 t̃1 → τ̃bν, τ̃ → τG̃ τ Emiss
T
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‣ BKG estimation:


‣ Dominant by  and single-Top process:


‣ True contributions: 2 real  and 1 real  for Di-Tau and Single-Tau channel


‣ Fake contributions: 1 real  and no real  from single-Top for Di-Tau and Single-Tau channel


‣ CRs and VRs for each source separately to correct and validate the estimations


‣ Others estimated via MC samples

t t̄

τ τ

τ τ



Search  and  in RPV with 1L+Jets final state:g̃g̃ t̃ t̃ ≥
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‣ Jet multiplicity prediction:


   


‣ B-jet multiplicity prediction:  with  and known 


  

rX( j) ≡ NX
j+1/NX

j , with rX( j) = cX
0 + cX

1 /( j + cX
2 ) ⇒ NX

j = NX
4 ⋅

j′￼=j−1

∏
j′￼=4

rX( j′￼)

NX
j,b = fX

j,b ⋅ NX
j ∑

b

fX
j,b = 1 NX

j

f( j+1),b = fj,b ⋅ x0 + fj,(b−1) ⋅ x1 + fj,(b−2) ⋅ x2, with f4,b as initial template
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THE END


