Studies of the CP properties of the Higgs boson at the ATLAS experiment

Phenomenology Symposium

May 2021, University of Pittsburgh

Ana Luísa Carvalho on behalf of the ATLAS Collaboration

Motivation and outline

- The Standard Model (SM) predicts the Higgs boson to be a scalar particle (J^{CP} = 0⁺⁺)
- Pure CP-odd Higgs boson has been excluded at 99.9% CL [ATLAS, CMS]
- Presence of a pseudoscalar admixture (J^{CP} = O⁺⁻) has not been excluded
 - Any measurement of a CP-odd contribution would be a clear sign of physics beyond the SM
- Looking for potential CP-odd components in the Higgs boson couplings is an important part of the ATLAS physics program

Showing today results from the following analyses (at 13 TeV)

- Vector boson fusion production (VBF) in $H \rightarrow \tau \tau$ ($\mathcal{L} = 36.1 \text{ /fb}$, June 2020)
 - Test of CP invariance using the Optimal Observable method, probing HVV interaction
- Production in association with top-quarks in H $\rightarrow \gamma \gamma$ (\mathcal{L} = 139 /fb, Aug. 2020)
 - Direct access to top Yukawa coupling, probing **Htt interaction**
- Production with additional jets in H \rightarrow WW* (\mathcal{L} = 36.1 /fb, Nov. 2020)
 - Gluon fusion (ggF): probing effective gluon-Higgs interaction (Hgg)
 - VBF: individually probes couplings to longitudinally and transversely polarized vector bosons (HVV)

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

- Targeting leptonic $(\tau \rightarrow \ell v v)$ and hadronic τ decays
- ullet Strength of CP violation can be described by a single parameter $ilde{d}$

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + \tilde{d} \cdot 2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-odd}}) + \tilde{d}^2 \cdot |\mathcal{M}_{CP\text{-odd}}|^2$$
CP-even CP-odd CP-even

- CP-odd optimal observable constructed from reconstructed four momenta of Higgs boson and two tagging jets
 - Non-vanishing mean value or an asymmetry would indicate the presence of BSM physics

$$O_{\text{opt}} = \frac{2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}})}{\left|\mathcal{M}_{\text{SM}}\right|^2}$$

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

- \geq 2 jets (VBF topology) and 2 isolated τ -leptons with opposite charge
- 4 analysis channels based on τ decay
 - $\sigma_{\rm lep} au_{
 m lep}$ different flavor, $au_{
 m lep} au_{
 m had}$ and $au_{
 m had} au_{
 m had}$: main background from ${
 m Z} {
 m d} au au$ and misidentified au
 - $\circ \qquad au_{\mathsf{lep}} au_{\mathsf{lep}}$ same flavor: main background **Z**o ℓ ℓ
- Selections targeting specific backgrounds
 - Missing transverse momentum requirement to reject events without neutrino candidates
 - B-jet veto to suppress top-quark backgrounds
- Boosted decision tree (BDT) to further discriminate between VBF signal and backgrounds

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

- 4 high BDT-score signal regions (one per channel): fit Optimal Observable
- 4 low BDT-score control regions: fit reconstructed Higgs mass to constrain the $Z \rightarrow \tau\tau$ normalization
- Dedicated control regions: fit event yield to constrain Z→ℓℓ and top-quark backgrounds
- Maximum likelihood fit including all signal and control regions
 - o **Only shape** information is exploited

Results

- Observed 68% CL of $\tilde{d} \in [-0.090, 0.035]$
- Best-fit signal strength: $\mu = 0.73 \pm 0.47$
- Predicted background distributions for the Optimal Observable are not perfectly symmetrical
- Dominant systematic uncertainties: jet reconstruction (experimental)

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

- Higgs boson produced in association with a top-quark pair (ttH) or single top-quark (tH) and decaying to a pair of photons ($H\rightarrow\gamma\gamma$)
 - tH rate is particularly sensitive to deviations from SM due to destructive interference between diagrams (but very small cross-section in SM)
- Offers direct probe of the top Yukawa coupling
 - Higgs characterization model provides EFT framework

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi}_t \kappa_t \left[\cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$
CP-even (SM)

- Goal is to constrain the 2D phase space given by (κ_{+}, α)
- Main background is $tt\gamma\gamma$: estimated through data-driven approach

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

- Require two isolated photons with $p_{\tau}>35$ (25) GeV
- Two ttH enriched regions target semi-leptonic and hadronic top-decays
- BDT used for top-quark reconstruction
- Events further categorized in two-dimensional BDT space
 - Background rejection BDT trained to separate ttH-like events from background
 - CP BDT trained to separate CP-even from CP-odd ttH and tH

ATLAS

139 fb

√s = 13 TeV

 \square tWH $\alpha = 90^{\circ}$

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

- Simultaneous maximum-likelihood fit performed to **m**_{yy} **spectrum** in all regions
 - \circ ttH and tH yields parameterized as a function of lpha and $\kappa_{\!\scriptscriptstyle +}$
- Parameters of the background model and normalization free to float
- Higgs boson coupling modifiers to photons (κ_{γ}) and gluons (κ_{g}) are constrained by the coupling combination analysis (repeated without the ttH and tH inputs)

Results

- |α| > 43° is excluded at 95% CL
 - Observed limit does not change if κ_{γ} and $\kappa_{\rm g}$ are parameterized using α and $\kappa_{\rm t}$
- Pure CP-odd coupling (α =90°) is excluded at 3.9 σ
- Statistical uncertainty is dominant

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

- Higgs boson produced through gluon fusion
- Constrain the properties of the effective Higgs-gluon interaction
- **Higgs characterization** model provides EFT framework

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{Agg} g_{Hgg} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right] H$$
CP-even

- Goal is to constrain κ_{Hgg} and $\kappa_{Agg'}$ assuming standard HVV couplings
 - \circ Signed $\Delta\Phi_{jj}$ observable: modulated by interference between CP-even and CP-odd
- Three different samples produced: CP-even, CP-odd and CP-mixed

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

- Higgs boson produced through vector boson fusion (VBF)
 - HVV vertex present in production and decay
- Individual access to the Higgs boson couplings to longitudinally and transversely polarized W and Z bosons

$$a_{\rm L} = \frac{g_{HV_{\rm L}V_{\rm L}}}{g_{HVV}}, \ a_{\rm T} = \frac{g_{HV_{\rm T}V_{\rm T}}}{g_{HVV}}$$

• Lorentz invariant effective lagrangian given by:

$$\mathcal{L} = \frac{\kappa_{VV} \left(\frac{2m_W^2}{v} H W_\mu^+ W^{-\mu} + \frac{m_Z^2}{v} H Z_\mu Z^\mu \right) - \frac{\varepsilon_{VV}}{2v} \left(2H W_{\mu\nu}^+ W^{-\mu\nu} + H Z_{\mu\nu} Z^{\mu\nu} + H A_{\mu\nu} A^{\mu\nu} \right)}{\text{SM}}$$

$$\text{BSM}$$

$$\text{with} \quad \kappa_{VV} \simeq a_{\text{L}} \,, \quad \varepsilon_{VV} \simeq 0.5 \cdot (a_{\text{T}} - a_{\text{L}}) \quad \text{(SM: } a_{\text{L}} = a_{\text{T}} = 1)$$

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

- Common preselection for both studies
 - Two isolated, different-flavour leptons with opposite charge and ≥ 2 jets
- Selections to reject dominant backgrounds: top-quark,
 Z→ττ and WW
 - Veto on b-jets and upper limit on di- τ invariant mass (common)
 - Minimum p_T and mass of dilepton pair and upper limit on Higgs transverse mass (ggF+2 jets)
 - Veto on central jets and leptons within the rapidity gap spanned by the two leading jets (VBF)

- Dedicated control regions to constrain the normalization of dominant backgrounds
- BDTs to further separate signal from background

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

Final CP discriminant: signed $\Delta\Phi_{ij}$

ggF + 2 jets

- 12 categories split based on BDT score (3) and $|\Delta \eta_{jj}|$: [0.0, 1.0, 2.0, 3.0, ∞]
- Yields in the **top**, **Z** $\rightarrow \tau\tau$ and **WW CR's** and in the **low-BDT-score** categories (2) in each $|\Delta\eta_{ii}|$ category are also included
- Free floating normalizations: top-quark, Z+jets and WW+jets

VBF

- 4 categories defined by the BDT-score
- Yields in the **top and Z** $\rightarrow \tau\tau$ **CR's** are also included in the fit
- Free floating normalizations: top-quark and Z+jets

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

By constraining the signal normalization to model predictions, both rate and shape can be exploited, thus increasing sensitivity

ggF + 2 jets

- Best fit value of $\kappa_{Agg}/\kappa_{Hgg} = 0.0 \pm 0.4$ (stat.) ± 0.3 (sys.)
- Dominant systematic uncertainties: modelling of top-quark background and ggF signal
- If signal normalization is free-floating, data is not sensitive enough to provide 68% CL

VBF

- Best fit values are $a_L = 0.90 \pm 0.12$ (stat.) ± 0.14 (sys.) and $a_T = 1.18 \pm 0.29$ (stat.) ± 0.15 (sys.), with the other fixed to 1
- Results do not change much if the other scale-factor is profiled

Summary

- ATLAS has looked for BSM contributions and set limits on CP anomalous couplings in the Higgs boson interactions with gluons (Hgg), vector-bosons (HVV) and fermions (Htt)
 - Exploring multiple final states and production modes
 - Employing experimental techniques ranging from Optimal Observable to multivariate discriminants
 - o Including datasets with different luminosities, up to full Run-2 statistics
- So far all measurements are in agreement with the SM expectations
- But still a lot of phase space to explore!
 - **Tighter constraints expected** over the next few years once all analyses are performed using the full Run-2 dataset
- For more information: <u>Higgs boson public results</u>

Backup

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \tilde{g}_{HAA}H\tilde{A}_{\mu\nu}A^{\mu\nu} + \tilde{g}_{HAZ}H\tilde{A}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HZZ}H\tilde{Z}_{\mu\nu}Z^{\mu\nu} + \tilde{g}_{HWW}H\tilde{W}_{\mu\nu}^{+}W^{-\mu\nu},$$

$$\tilde{g}_{HAA} = \frac{g}{2m_{W}}(\tilde{d}\sin^{2}\theta_{W} + \tilde{d}_{B}\cos^{2}\theta_{W}) \qquad \tilde{g}_{HAZ} = \frac{g}{2m_{W}}\sin 2\theta_{W}(\tilde{d} - \tilde{d}_{B})$$

$$\tilde{g}_{HZZ} = \frac{g}{2m_{W}}(\tilde{d}\cos^{2}\theta_{W} + \tilde{d}_{B}\sin^{2}\theta_{W}) \qquad \tilde{g}_{HWW} = \frac{g}{m_{W}}\tilde{d},$$

$$\tilde{g}_{HWW} = \frac{g}{m_{W}}\tilde{d},$$

$$\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{g}{2m_{W}}\tilde{d} \quad \text{and} \quad \tilde{g}_{HAZ} = 0$$

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

$$|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + \tilde{d} \cdot 2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) + \tilde{d}^2 \cdot |\mathcal{M}_{\text{CP-odd}}|^2$$

$$O_{\text{opt}} = \frac{2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}})}{|\mathcal{M}_{\text{SM}}|^2}$$

$$2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) 2 \operatorname{Re}((\mathcal{M}_{\text{SM}}^{ij \to klH})^* \mathcal{M}_{\text{CP-odd}}^{ij \to klH})$$

$$|\mathcal{M}_{\text{SM}}|^2 = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) |\mathcal{M}_{\text{SM}}^{ij \to klH}|^2.$$
with $x_{1,2}^{\text{reco}} = \frac{m_{Hjj}}{\sqrt{r_s}} e^{\pm y_{Hjj}}$

For each value of d[~], the value of the matrix elements are calculated by HAWK using the kinematics of the reconstructed particles. Since the flavour of the initial- and final-state partons cannot be determined experimentally, the sum over all possible flavour configurations ij→klH weighted by the PDFs is used

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

BDT input variables:

- Properties of the Higgs boson which discriminate against all background processes without a Higgs boson: visible mass of di- τ system, transverse momentum of the $\tau\tau$ + missing transverse energy system, reconstructed Higgs boson mass
- Properties of the resonant di-τ decay which discriminate against processes with jets that are
 misidentified as τ-candidates: angular distance, difference in pseudorapidity, difference in azimuth,
 transverse momentum ratio between MET and τ-candidates, transverse mass of MET and leading
 τ-candidate, azimuthal centrality of MET
- Properties of the VBF topology: **dijet invariant mass**, total transverse momentum, η -centralities of each τ -candidate relative to the pseudorapidity of the two leading jets, transverse momentum of the third leading jet

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

 \mathcal{L} = 36.1 /fb at 13 TeV, Phys. Lett. B 805 (2020) 135426

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

CP BDT input variables:

- p_T and η of diphoton system
- p_T and η of top-candidates
- top-candidates azimuthal angles calculated relative to the diphoton system
- top-reconstruction BDT scores
- difference in pseudorapidity and azimuth between top-quark candidates
- invariant mass of diphoton and primary top-quark
- invariant mass of two top-quark candidates
- scalar p_T sum of jets (H_T) and MET/ $\sqrt{H_T}$
- number of jets and b-tagged jets
- minimum and second-smallest angular differences between a photon and a jet

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

Background rejection BDT input variables in leptonic category:

- p_{τ} , η , ϕ and energy of up to four (two) leading jets (leptons)
- magnitude and azimuth of MET
- transverse momentum of each of the two photons divided by the diphoton invariant mass
- η and ϕ of each photon

Background rejection BDT input variables in hadronic category:

- p_T , η , ϕ , energy and b-tagging decision of up to six leading jets
- missing transverse momentum
- same photon variables as used in leptonic BDT

 $\mathcal{L} = 139$ /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

Analysis regions definition in hadronic and leptonic channels

 \mathcal{L} = 139 /fb at 13 TeV, Phys. Rev. Lett. 125, 061802

1D likelihood scan on α with κ_t allowed to vary and ggF and H→γγ constrained by Higgs boson coupling combination

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

BDT input variables in ggF + 2 jets:

- dilepton invariant mass, transverse momentum and azimuthal angle
- transverse mass of Higgs boson candidate
- minimal distance between leading and subleading leptons and two tagging jets

BDT input variables in VBF:

- dilepton invariant mass and azimuthal angle
- transverse mass of Higgs boson candidate
- dijet invariant mass, rapidity difference between two leading jets
- lepton centrality
- sum of invariant masses of all four possible lepton-jet pairs
- total transverse momentum.

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

$$a_{\rm L} = \kappa_{VV} + \Delta_{\rm L}(q_1, q_2)\varepsilon_{VV}$$
, $a_{\rm T} = \kappa_{VV} + \Delta_{\rm T}(q_1, q_2)\varepsilon_{VV}$

$$\Delta_{\rm L} = \frac{m_H^2}{2m_W^2} \frac{4q_1^2q_2^2}{m_H^2(m_H^2 - q_1^2 - q_2^2)} \,, \quad \Delta_{\rm T} = \frac{m_H^2}{2m_W^2} \frac{m_H^2 - q_1^2 - q_2^2}{m_H^2}$$

Based on Madgraph5_aMC@NLO simulations, $\Delta_L(q1, q2) = 0$ and $\Delta_T(q1, q2) = 2$ is found to be a good approximation, leading to the mapping used in the analysis:

$$\kappa_{VV} \simeq a_{\rm L}, \quad \varepsilon_{VV} \simeq 0.5 \cdot (a_{\rm T} - a_{\rm L})$$

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

 Expected and observed likelihood curves for scans over K_{Agg}/K_{Hgg} where only the shape is taken into account in the fit

• 68% and 95% CL two-dimensional likelihood contours of the CP-even and CP-odd coupling parameters $\Delta \kappa_{Hgg}$ and $\Delta \kappa_{Agg}$

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

• a_T , shape-only fit with $a_1 = 1$

• a_T shape-rate fit with $a_L = 1$

 \mathcal{L} = 36.1 /fb at 13 TeV, <u>ATLAS-CONF-2020-055</u>

• κ_{VV} shape+rate with profiled ε_{VV}

