

Flavorful Composite Higgs Models

based on arXiv:2104.11719 and 2106.XXXXX

Yi Chung

QMAP, Department of Physics, UC Davis

Phenomenology Symposium, May 25, 2021 University of Pittsburgh

Two Hierarchies in the Standard Model

Scalar - hierarchy problem

• Fermion - flavor puzzle

yichung@ucdavis.edu

Higgs as pseudo-Nambu-Goldstone bosons

Light pions in QCD \leftrightarrow Light Higgs in EW

Composite Higgs Models

> Chiral symmetry breaking in Λ_{QCD}

```
SU(2)_L \times SU(2)_R \to SU(2)_V
```

which gives three massless NG bosons, i.e. pions!!

However, the symmetry is broken by EM interactions and quark masses, and we get massive pions.

 \succ (Some global) symmetry breaking in Λ_{EW}

 $\mathcal{G} \to \mathcal{H} \ni SU(2)_L \times U(1)_Y$

which gives (at least) four NG bosons as **Higgs doublet!!**

The symmetry can be broken by different interactions (usually by electroweak interaction and Yukawa interaction) and give us the nontrivial Higgs potential.

Partial Compositeness

Composite pNGBs can couple to SM particles through the mixing between SM particles and composite resonances with the same quantum number.

Elementary Sector	${\cal L}_{mix} = \lambda ar{\psi} {\cal O}_\psi + q A_\mu J^\mu$	Composite Sector
$\psi_{L/R}$, A_{μ}		H, $\mathcal{O}_{L/R}$, J_{μ}
SM particles (w/o Higgs)		composite resonances

The SM particles are the mixture of elementary state and composite state.

yichung@ucdavis.edu

The Froggatt-Nielsen (FN) mechanism

Assume an abelian $U(1)_F$ flavor symmetry, where different SM fermions carry different flavor charges, so the SM Yukawa couplings can not be generated directly.

The low-energy effective Yukawa coupling terms require the insertion of additional $U(1)_F$ charged scalar fields – flavon s, as

$$\mathcal{L}_{\text{Yukawa}} = y_{ij} \left(\frac{s}{\Lambda_F}\right)^{a_{ij}} \bar{q}_{L,i} H q_{R,j}$$

The coupling can be understood as integrating out **the heavy vector-like fermion** *B*

Flavon field gets a VEV which carries charge

- flavor breaking vacuum v_s

Vector-like fermions get masses w/o charges

- flavor conserving mass M_B

Similarity between two mechanisms

Froggatt-Nielsen mechanism

- $U(1)_F$ flavor symmetry
- scalar flavon s with VEV v_s
- vector-like fermion *B*

- A small parameter $\mathcal{E} = v_s / M_B$
 - flavor breaking vacuum v_s
 - flavor conserving mass M_B

CHM with Partial Compositeness

- $\mathcal{G} \to \mathcal{H}$ global symmetry breaking
- pseudo-Nambu-Goldstone bosons
- composite resonances (baryon)

- Questions
 - where is the $U(1)_F$ flavor symmetry?
 - how to get the other scale?

Two ways to embed the flavor symmetry

Symmetry breaking in CHMs: *full group* $\mathcal{G} \rightarrow unbroken \ subgroup \ \mathcal{H}$

- 1) $U(1)_F \subset \mathcal{H}$
 - The flavon field arises as pNGB of global symmetry breaking
 - $U(1)_F$ is subsequently broken by the VEV of the flavon field
 - Analogy to EWSB: \sim Composite Higgs
- 2) $U(1)_F \subset \mathbf{G}$ but not \mathcal{H}
 - Only the pNGB of broken $U(1)_F$ (no scalar flavon)
 - $U(1)_F$ is broken by strong dynamics directly
 - $\circ~$ Analogy to EWSB: $\sim {\rm Technicolor}$

$U(1)_F \subset \mathcal{H}: SU(6)/Sp(6) \text{ CHM}$

Nonlinear Sigma model Σ as an anti-symmetric tensor representation

$$\langle \Sigma \rangle = f \begin{pmatrix} 0 & -\mathbb{I}_{3 \times 3} \\ \mathbb{I}_{3 \times 3} & 0 \end{pmatrix} \qquad U(1)_F : \frac{1}{2} \begin{pmatrix} \mathbb{I}_{2 \times 2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\mathbb{I}_{2 \times 2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \subset Sp(6)$$

The coset SU(6)/Sp(6) contains 14 pNGBs, including a real triplet ϕ_a , a real singlet η , a complex singlet *s* (as the flavon field), and two Higgs (complex) doublets H_1 and H_2

$$\pi_a X_a = \begin{pmatrix} \frac{\phi_a}{\sqrt{2}} \sigma^a - \frac{\eta}{\sqrt{6}} \mathbf{1} & H_2 & \epsilon s & H_1 \\ H_2^{\dagger} & \frac{2\eta}{\sqrt{6}} & -H_1^T & 0 \\ \epsilon^T s^* & -H_1^* & \frac{\phi_a}{\sqrt{2}} \sigma^{a*} - \frac{\eta}{\sqrt{6}} \mathbf{1} & H_2^* \\ H_1^{\dagger} & 0 & H_2^T & \frac{2\eta}{\sqrt{6}} \end{pmatrix} \qquad \text{The complex singlet is SM singlet but carries flavor charge 1}$$

The flavon field *s* can acquire a VEV $\langle s \rangle = v_s$

- flavor breaking vacuum v_s
- flavor conserving mass $M \sim gf$

9/13

$U(1)_F \subset \boldsymbol{G}: SU(4)/Sp(4) \text{ CHM}$

Nonlinear Sigma model Σ as an anti-symmetric tensor representation

$$\langle \Sigma \rangle = f \begin{pmatrix} i\sigma_2 & 0\\ 0 & i\sigma_2 \end{pmatrix} \qquad \qquad U(1)_F : \frac{1}{2} \begin{pmatrix} \mathbb{I}_{2 \times 2} & 0\\ 0 & -\mathbb{I}_{2 \times 2} \end{pmatrix} \subset SU(4)$$

The coset SU(4)/Sp(4) contains 5 pNGBs, including a real singlet *a* and Higgs doublet *H*

$$\pi_a X_a = \begin{pmatrix} \frac{ia}{\sqrt{2}} \mathbb{I}_{2 \times 2} & (\tilde{H} \ H) \\ -(\tilde{H} \ H)^{\dagger} & -\frac{ia}{\sqrt{2}} \mathbb{I}_{2 \times 2} \end{pmatrix}$$
 The real singlet is the pNGB of broken $U(1)_F$ flavor symmetry

We still need a flavor conserving vacuum to generate the hierarchy, ex: technifermion mass

yichung@ucdavis.edu

Flavorful Composite Higgs

10/13

Comparison between two examples

Composite Flavon [2104.11719]

- $U(1)_F \subset \mathcal{H}$
- *SU*(6)/*Sp*(6) CHM
- Flavor breaking scale $v_s \sim 100 \text{ GeV}$
- flavor conserving $f \sim 1 \text{ TeV}$
- Suppression $\varepsilon = \frac{v_s}{f}$

Flavorful CHM [2106.XXXX]

- $U(1)_F \subset \boldsymbol{G}$ but not $\boldsymbol{\mathcal{H}}$
- *SU*(4)/*Sp*(4) CHM
- Flavor breaking scale f ~ 1 TeV
- flavor conserving ~ technifermion mass
- Suppression $\mathcal{E} = \frac{f}{M_F}$ or $\frac{m_F}{f}$

Conclusions

- **Dynamical origin of flavor scale** under the framework of CHMs
- Strong dynamics can automatically generate required vector-like fermions
- Multiple scenarios to introduce the required vacuums and suppression
- Combining with CHMs provides testable **TeV-scale flavor models**

To go further!?

- Non abelian flavor symmetry (ex: SU(3), SO(3)....)
- Flavor violating Higgs and Minimal Flavor Violation

yichung@ucdavis.edu

yichung@ucdavis.edu

Inverse Froggatt-Nielsen mechanism

In the original FN mechanism, the small parameter comes from

$$\varepsilon = \frac{v_s}{M} = \frac{flavor\ violating}{flavor\ conserving}} \xrightarrow{inverse} \frac{flavor\ conserving}{flavor\ violating}$$

Example: in SU(4)/Sp(4) CHM, embed both LH and RH quarks in the fourplet $4_{1/6,0} = 2_{1/6,1/2} (\rightarrow q_L) \oplus 1_{2/3,-1/2} (\rightarrow t_R) \oplus 1_{-1/3,-1/2} (\rightarrow b_R)$

But these mixing terms didn't break SU(4)

If there is small difference between $M_{1/2}$ and $M_{-1/2}$

 $M_{1/2} - M_{-1/2} = m_F$ (technifermion mass)

Flavorful Composite Higgs

 \mathbf{O}

Mass hierarchy by partial compositeness

In partial compositeness scenario, one general way to get fermion mass hierarchy is

Consider
$$\mathcal{L} = \frac{\lambda}{\Lambda_{UV}^{d-5/2}} \bar{q}_{L,R} O_{L,R}$$
 with composite operators $O_{L,R} \sim \Lambda_{IR}^{d-3/2} Q_{L,R}$
It will result in the suppression $\implies \frac{\Lambda_{IR}^{d-3/2}}{\Lambda_{UV}^{d-5/2}} \sim \left(\frac{\Lambda_{IR}}{\Lambda_{UV}}\right)^{d-5/2} \Lambda_{IR}$ if $\Lambda_{UV} > \Lambda_{IR}$ and $d > 5/2$

In our case, the dimension of the operators could all be the same and only one scale Λ_F but only composite resonances with correct flavor charges can give us Yukawa coupling.

Therefore, the correct estimation of scale looks like $O_{L,R} \sim v_s^a \Lambda_F^{d-3/2-a} Q_{L,R}$

,which include the consideration of flavor charge and flavor violating scale v_s .

The suppression becomes $\implies \frac{v_s^a \Lambda_F^{d-3/2-a}}{\Lambda_F^{d-5/2}} \sim \left(\frac{v_s}{\Lambda_F}\right)^a \Lambda_F$ with *a* determined by charges.

Flavon Phenomenology

The primary target is the **Flavon** (scalar / pseudo-scalar)

Bauer et al., arXiv:1603.06950

Similar to Higgs boson but depends on flavon VEV and Yukawa matrices.

Other targets: the second Higgs doublet, vector-like fermions.....

yichung@ucdavis.edu

Neutral Meson Mixing

The neutral meson mixing depends on the scenario we use. Take one of them as example

$$C_4^{ij}(\bar{q}_R^i q_L^j)(\bar{q}_L^i q_R^j)$$
 with $C_4^{ij} = -g_{ij}g_{ji}^*\left(\frac{1}{M_s^2}\right)$

The coupling g_{ij} is determined by the observed fermion masses over the flavon VEV v_s .

The current constraints on the product of flavon vacuum and flavon mass-

	$v_s M_s \ (\text{GeV}^2)$
C_{B_s}	32000
$arphi_{B_s}$	128000
C_{B_d}	183000
$arphi_{B_d}$	250000
Δm_K	255000
ϵ_K	2550000

(1) Constraints from flavor physics are much stronger (2) Yukawa matrices and CP properties are important (3) Scenarios with small v_s are probably ruled out (4) TeV VEV × TeV Mass is around the corner!!