

Higgs Boson to Charm Quarks in Vector Boson Fusion plus a Photon

Sze Ching Leung, Iris University of Pittsburgh

Pheno 2021, May 25

Ben Carlson, Tao Han, SCL, arXiv: 2105.08738

05/25/2021

Pheno 2021

Since the discovery of Higgs Boson...

- (Precise) measurements of Higgs couplings are in high priority
- Higgs couplings to
 - Weak bosons: by spontaneous symmetry breaking, well measured

• Fermions: by Yukawa interactions, not fully measured

$$y_f = \frac{\sqrt{2}m_f}{v}$$

Current Status of Yukawa Couplings

- $3^{
 m rd}$ generation Yukawa couplings observed at 5σ
- Consistent with SM
- Higgs couplings to 2nd generation are important
 - Confirm the Higgs mechanism and pattern of non-universal Yukawa couplings
 - Search for deviations from SM

Searches for Charm-Yukawa Coupling

- Branching ratio: 2.9%
- Large QCD background
- c-tagging is challenging
- Existing experimental searches:
 - $pp \rightarrow VH(c\bar{c})$
 - c-tagging required
 - best chance: $y_c \leq 3y_c^{SM}$

ATL-PHYS-PUB-2018-016 LHCb: arXiv:1808.08865 CMS: arXiv:1912.01662

Other proposals: $gc \rightarrow Hc$, global fit, $H \rightarrow c\bar{c}\gamma$...

arXiv: 1503.00290, 1507.02916, 1606.09621, 1609.06592, 1611.05463, 1702.05753, 1705.09295, 1812.06992, 1905.03764, 1905.09360, 1909.05279, 2008.12538, 2101.04119

Pheno 2021

A New Approach: VBF + γ

- Striking signatures and sizable signal events
- Additional photon results in lower rate
- Compensated by
 - Extra handle to trigger on
 - Suppression of gluon-rich background

University of Pittsburgh

Trigger Strategy

- Not all data recorded at LHC
- pp collision @40 MHz => L1 trigger
 @100 kHz => HLT @1 kHz

ATLAS trigger for $VBF(H \rightarrow b\overline{b})$: arXiv: 1807.08639, 2010.13651

- Photon $E_{\rm T}^{\gamma} > 30$ GeV;
- At least four jets with $p_{\rm T}^j > 40$ GeV;
- At least one pair of jets with $m_{jj} > 700$ GeV;
- At least one *b*-tagged jet with 77% efficiency.
- for $H \rightarrow c\bar{c}$: require a charm tag or raise m_{jj} threshold

Analysis Set-up

- MG5 + Pythia8 + Delphes3
- $\sqrt{s} = 13 \text{ TeV}$

Pre-selections:

- $E_T^{\gamma} > 30$ GeV, $\eta^{\gamma} < 1.37$ or within 1.52 2.37
- 4 jets with $p_T^j > 40$ GeV and $\eta^j < 4.4$
- VBF jets with m_{jj} > 800 GeV
- At least 2 *c*-tagged jet with 41% (25%, 5% mistag rate for *b*, light jets) efficiency with $\eta^c < 2.5$
- Signal c-jets with $p_T^{cc} > 80 \text{ GeV}$

Cut-based Analysis

- $m_{jj}, m_{jj\gamma} > 1000 \text{ GeV}, p_T^{jj} < 300 \text{ GeV}, p_T^{balance} < 0.2$
- $\Delta \eta_{jj} > 4$, $\Delta R(c_{1,2}, \gamma) > 1.4$, $\Delta \phi(jj) < 2.1$, $\Delta \phi(cc, jj) > 2.3$
- centrality(γ , jj) < 0.35, $m_{cc\gamma}$ < 700 GeV

Multivariate Analysis: Boosted Decision Tree

- TMVA package
- Trained with same set of observables used in cut-based analysis
- Low signal: -0.07 0.01, medium: 0.01 0.08, high: > 0.08

BDT Results

	Low signal		Medium signal			High signal		
	S	В	S		В		S	В
BDT cut	4.5	$7.6 imes 10^5$	8.5	5	4.1×1	0^{5}	16	$1.5 imes 10^5$
mass cut Eq. (3.11)	2.4	1.1×10^5	5.5	5	8.2×1	04	11	2.8×10^4
S/\sqrt{B}	0.0073		0.019		0.066			
S/\sqrt{B} combined					0.070			

Constraint on *y*_c

• Parametrize the modification to charm-Yukawa coupling:

$$y_c = \kappa_c y_c^{SM} \Rightarrow N_{sig} \simeq \kappa_c^2 N_{sig}^{SM}$$

• Upper bound on κ_c at 95% C.L in absence of systematics:

	LHC	Cut-based	BDT	ZH [16, 17]	Fit [33]	<i>Hc</i> [31]	$H \to c \bar{c} \gamma$ [41]
10	$36.1 { m ~fb}^{-1}$	20	16	10	-	-	-
∼ _c	$3 \mathrm{~ab}^{-1}$	6.5	5.4	2.5	1.2	2.6 - 3.9	8.6

- Constraint comparable to current projections
- Complementary to other channels
- Direct probe of y_c (vs. global fit)

High Energy Projection

- Same analysis with increase in cross-sections
- Basically scaling with \sqrt{s}

	$13 { m TeV}$	14 TeV	30 TeV	100 TeV
$\sigma_{{ m VBF}+\gamma}~({ m pb})$	0.024	0.027	0.099	0.43
$\sigma_{pp \to 4j + \gamma} $ (pb)	830	940	3700	21000

\sqrt{s}	13 TeV	30 TeV	100 TeV
$S/\sqrt{B} (3 \text{ ab}^{-1})$	0.07	0.14	0.25
κ_c reach	5.4	3.8	2.8

Summary

- Precise measurements of Higgs coupling to charm quarks is crucial to confirm Yukawa interactions in SM and search for deviations from SM
- A new channel **VBF** + γ is studied, giving a constraint of **5** times y_c^{SM} at HL-LHC at 95% C.L.
- Comparable to current projections, better constraint on y_c than some previous work
- Combination of all channels may get close to the SM value
- Projections at high energies are investigated