Higgs boson couplings to quarks and leptons with the ATLAS experiment

Eleanor Jones On behalf of The ATLAS Collaboration

Phenomenology 2021 Symposium

eleanor.jones@cern.ch

Introduction

- The $b\bar{b}$ decay mode has the highest branching fraction
 - with a predicted rate of $\mathcal{B}(H \to b\bar{b}) = 58.1\%$
- The $\mu\mu$ decay mode offers the best opportunity to study the interactions to 2nd-generation fermions at the LHC
 - ▶ with a predicted rate of $\mathcal{B}(H \to \mu\mu) = (2.17 \pm 0.04) \times 10^{-4}$
- There are four main production mechanisms for the Standard Model Higgs boson:
 - Gluon-gluon fusion has the largest cross-section but is difficult for Higgs boson decays to b-quarks due to high levels of background. However, it can be a probe of extremely high momentum scales
 - VH is the most sensitive production channel at hadron colliders when the Higgs boson decays to *b*-quarks
 - VBF has the second-largest cross-section but has a hard experimental signature for Higgs boson decays to *b*-quarks
 - ttH, despite only contributing about 1% to the total Higgs production crosssection, allows a direct measurement of the top-quark Yukawa coupling

[CERN Yellow Report 4]

LHCHXSWG

Phenomenology 2021 Symposium

Jet Reconstruction

- The analyses all use the anti-k_t algorithm to reconstruct jets with different radii depending on the topology involved
 - LCTopo = reconstructed from topoclusters calibrated at the local hadronic scale
 - EMTopo = reconstructed from topoclusters calibrated at the electromagnetic scale
 - PFlow = reconstructed from particle flow objects constructed from calorimeter energy clusters and tracks

Analysis	Type of Jet	Radius	p_T [GeV]
Boosted $H \rightarrow b\overline{b}$	LCTopo	1.0 (Large-R)	> 250
$VBF\ H \to b\overline{b}$	PFlow	0.4 (Small-R)	> 30
$VBF\ H\bigl(\to b\bar{b}\bigr) + \gamma$	ЕМТоро	0.4 (Small-R)	> 20
VH, $H \rightarrow b\overline{b}$ Resolved	ЕМТоро	0.4 (Small-R)	> 20/30
VH, $H \rightarrow b\overline{b}$ Boosted	LCTopo	1.0 (Large-R)	> 250
$t\bar{t}H, H \rightarrow b\bar{b}$	ЕМТоро	0.4 (Small-R)	> 25
$H \rightarrow \mu \mu$	PFlow	0.4 (Small-R)	> 25/30

b-tagging

- All the analyses use a multivariate *b*-tagging algorithm to identify *b*-jets
 - it is a boosted decision tree that takes inputs from a range of kinematic properties of b-jets as well as outputs of lower-level algorithms that are based on properties of the relatively long lifetime of b-hadrons
- Single-cut operating points are defined on the BDT discriminant distribution such that an average efficiency of b-jets in simulated tt events is ensured
- Some of the analyses use a 'pseudo-continuous' calibration so that they can mix different operating points for different regions or jets

6		jection	
сp	<i>c</i> -jet	τ-jet	Light-flavour jet
60%	23	140	1200
70%	8.9	36	300
77%	4.9	15	110
85 %	2.7	6.1	25

Boosted $H \rightarrow b\bar{b}$: Analysis Overview

- Boosted decays allow access to the high- p_T Higgs spectrum
- New physics contributions could increase the Higgs cross-section by up to 50% at high- p_T
- At high-p_T, the *b*-jets become highly collimated inside a large-R jet
- Both the leading and sub-leading jets are considered as possible Higgs candidates to define the signal and validation regions
- A dedicated $t\bar{t}$ control region is used to determine the $t\bar{t}$ yield
- The analysis is designed to be sensitive to ggF production, whilst still including the other production modes

Boosted $H \rightarrow b\overline{b}$: Fiducial Measurement

- A binned maximum-likelihood fit to the jet mass spectrum is performed to extract the signal
- The fiducial measurements offer an easy comparison to theoretical predictions
- Phase space defined as $|\eta_H| < 2.0$ and $p_T^H > 450$ GeV and $p_T^H > 1$ TeV
 - ▶ The $p_T^H > 1$ TeV region probes a new domain of highly-boosted Higgs
- The extracted signal strengths are:

 $\mu_H(p_T^H > 450 \text{ GeV}) = 0.7 \pm 3.3$ $\mu_H(p_T^H > 1 \text{ TeV}) = 26 \pm 31$

corresponding to measured cross-sections of:

 $\sigma_H(p_T^H > 450 \text{ GeV}) = 13 \pm 52(\text{stat.}) \pm 32(\text{syst.}) \pm 3(\text{theory}) \text{ fb}$

 $\sigma_H(p_T^H > 1 \text{ TeV}) = 3.4 \pm 3.9(\text{stat.}) \pm 1.0(\text{syst.}) \pm 0.8(\text{theory}) \text{ fb}$

Boosted $H \rightarrow b\overline{b}$: Differential Measurement

- > The differential measurements offer enhanced sensitivity to BSM effects
- The extracted signal strengths are:

H [C V]	μ	ι_H
p_{T} [Gev]	Exp.	Obs.
300 - 450	1 ± 18	-7 ± 17
450 - 650	1.0 ± 3.3	-2.9 ± 4.7
>650	1.0 ± 6.3	4.8 ± 6.4

leading to 95% confidence level upper limits:

```
\sigma_H (300 < p_T^H < 450 \text{ GeV}) < 2.8 \text{ pb}
\sigma_H (450 < p_T^H < 650 \text{ GeV}) < 91 \text{ fb}
\sigma_H (p_T^H > 650 \text{ GeV}) < 40.5 \text{ fb}
```


VBF Production: Analyses Overview

- When there is a photon present in the final state, the VBF production mode has a cross-section twice as large as all the other production modes combined
- There is destructive interference between matrix elements for initialand final-state radiation, suppressing contributions from Z boson fusion and the dominant multi-jet non-resonant background
- The high- p_T photon also allows for efficient triggering
- A boosted decision tree with 10 kinematic input variables is trained on MC to separate signal and background
 - the BDT output defines 3 signal regions

 $\begin{array}{c} 0.12 \\ 0.12 \\ 0.1 \\ 0.$

VBF $H + \gamma$: Results

- The signal strength is extracted from an extended unbinned maximum-likelihood fit to the m_{bb} distribution simultaneously in all 3 signal regions
- μ_H and μ_{VBF} are single parameters of interest common to all 3 signal regions

 $\mu_{VBF} = \mu_H = 1.3 \pm 1.0$

corresponding to an observed significance of 1.3 σ for μ_H

• There are separate, uncorrelated μ_Z parameters of interest for each signal region

$$\mu_Z^{HighBDT} = 1.9 \pm 1.2 \qquad \qquad \mu_Z^{MediumBDT} = 1.5 \pm 1.1$$
$$\mu_Z^{LowBDT} = -1.3^{1.2}_{-1.6}$$

VBF Production: Analyses Overview

arXiv:2011.08280

VBF $H \rightarrow bb$

- Event selection is orthogonal to the $H + \gamma$ analysis so that a combination measurement can also be performed
- > 2 orthogonal analysis channels determined by the presence or absence of a high- p_T forward jet
- An adversarial neural network is constructed using 12 kinematic input variables, such that the classifier output is independent of the di-b-jet mass
 - ▶ 5 signal regions per channel are created based on the classifier score

VBF *H*: **Results**

The signal strength is extracted from an extended binned maximum-likelihood fit to the m_{bb} distribution simultaneously in all 10 signal regions yielding

 $\mu_{VBF,H\to b\bar{b}} = 0.95^{+0.32}_{-0.32} (\text{stat.})^{+0.20}_{-0.17} (\text{syst.})$

corresponding to an observed significance of 2.6σ

The result is also combined with the result from the $H\gamma$ analysis in a combine likelihood fit sharing the Higgs boson signal strength as a common parameter of interest:

 $\mu_{H \to b\bar{b}} = 0.99^{+0.30}_{-0.30} (\text{stat.})^{+0.10}_{-0.15} (\text{syst.})$

corresponding to an observed significance of 3.0σ

 $\mu_{VBF,H\to b\bar{b}} = 0.99^{+0.30}_{-0.30} (\text{stat.})^{+0.18}_{-0.16} (\text{syst.})$

corresponding to an observed significance of 2.9σ

$t\bar{t}H(H \rightarrow b\bar{b})$: Analysis Overview

ATLAS-CONF-2020-058

- The analysis is split into 2 regions: dilepton and single-lepton
- Events are further categorized into a total of 16 regions: 11 signal regions and 5 control regions
 - In the single-lepton channel, a boosted signal region is considered split into 2 p_T^H bins
 - The dilepton and single-lepton resolved signal regions are further split into 4 or 5 reconstructed p_T^H bins, respectively
 - All control regions are inclusive in p_T^H
- The $H \rightarrow b\bar{b}$ decay mode accounts for at least 94% of $t\bar{t}H$ events in the signal regions
- Multivariate classifiers are used in 2 parts of the analysis:
 - identifying Higgs boson candidates
 - classifying $t\bar{t}H$ signal events

$t\bar{t}H(H \rightarrow b\bar{b})$: Results

- A profile-likelihood fit is performed to a combination of the classification boosted decision tree distribution in the signal regions and the event yield or ΔR_{bb}^{avg} distributions in the dilepton or single-lepton control regions respectively
- The extracted inclusive signal strength is $\mu = 0.43^{+0.20}_{-0.19} (\text{stat.})^{+0.30}_{-0.27} (\text{syst.})$ corresponding to an observed significance of 1.3σ
- The first differential measurement of the $t\bar{t}H$ signal strength is also performed in bins of truth p_T^H

$VH, H \rightarrow bb$: Analyses Overview

Eur. Phys. J. C 81 (2021) 178

Phys. Lett. B 816 (2021) 136204

- The leptonic decay of the vector boson enables efficient triggering and a large reduction of the multi-jet background
- Both analyses measure the cross-section for associated production in several p_T regions and constrain anomalous couplings in a Standard Model effect field theory
- Three signatures are explored: $ZH \rightarrow \nu\nu b\bar{b}$, $WH \rightarrow l\nu b\bar{b}$ and $ZH \rightarrow llb\bar{b}$ in 3 (2) p_T regions for the resolved (boosted) analysis

Resolved

- Performs a binned maximum-likelihood fit to a total of **42 regions**: 14 signal regions and 28 control regions
- Discriminating variable: outputs of **boosted decision trees** are trained in 8 regions, evaluated in each signal region

Candidate event for $WH \rightarrow \mu v b \bar{b}$

Boosted

Performs a binned profile-maximumlikelihood fit to a total of 14 regions: 10 signal regions and 4 control regions

2017-10-16 20:24:46 CES

Discriminating variable: Higgscandidate jet mass distribution

$VH, H \rightarrow b\overline{b}$: Resolved Results

Evidence for the WH production mode and an observation of the ZH production mode were reported:

 $\mu_{WH}^{bb} = 0.95_{-0.25}^{+0.27}$ $\mu_{ZH}^{bb} = 1.08_{-0.23}^{+0.25}$

corresponding to observed significances of 4.0σ and 5.3σ , respectively

- Simplified p_T -dependent cross-sections are measured
- Limits are set in the context of an SMEFT interpretation

subtracted

μ

10 GeV (Weighted,

35

30

25

20

15

10F

40 ATLAS

vs = 13 TeV, 139 fb⁻¹

2+3 jets, 2 b-tags

Dijet mass analysis

Weighted by Higgs S/B

0+1+2 leptons

-- Data

Diboson

VH, H $\rightarrow b\overline{b}$ (µ=1.17)

B-only uncertainty

$VH, H \rightarrow b\overline{b}$: Boosted Results

> The signal strength parameters are extracted simultaneously with μ_{VZ}^{bb}

The overall single VH signal strength is
$$\mu_{VH}^{bb} = 0.72^{+0.39}_{-0.36}$$

corresponding to an observed significance of 2.1σ

- > The cross-section is measured in the in simplified p_T -dependent regions
- Limits are also set on the coefficients of the effective Lagrangian operators that affect VH production and the $H \rightarrow b\overline{b}$ decay

$H \rightarrow \mu \mu$: Analysis Overview

- Events with 2 oppositely-charged muons are selected and classified into 20 mutually exclusive categories
 - based on the number of additional electrons or muons and the number of jets and b-tagged jets
- Events are selected to each category in an exclusive order so that there is no overlap:
 - ▶ $t\bar{t}H$, VH, VBF+ggF
- Boosted decision trees for each category are trained to enhance the signal sensitivity, giving the 20 categories:
 - ▶ 1 *ttH*
 - 2 VH 3-lepton categories
 - ► 1 VH 4-lepton category
 - ▶ 4 VBF categories
 - ▶ 12 ggF categories

$H \rightarrow \mu \mu$: Results

- A simultaneous binned maximum-likelihood fit to the 20 dimuon mass distributions is used to extract the signal yield
- The best-fit value for the combined signal strength is

 $\mu = 1.2 \pm 0.6$

corresponding to an observed significance of 2.0σ

An upper limit on the signal strength at the 95% confidence level is also computed:

 $\mu < 2.2$

The corresponding upper limit at the 95% confidence level on the branching ratio is:

 $\mathcal{B}(H \to \mu \mu) < 4.7 \times 10^{-4}$

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ATLAS $H \rightarrow \mu\mu$ Total Stat. Syst. H-Total Stat. Syst. SM VH and ttH categories $5.0 \pm 3.5 (\pm 3.3, \pm 1.1)$ $-0.4 \pm 1.6 (\pm 1.5, \pm 0.3)$ ggF 0-jet categories ggF 1-jet categories $2.4 \pm 1.2 (\pm 1.2, \pm 0.3)$ --0.6 \pm 1.2 (\pm 1.2 , \pm 0.3) ggF 2-jet categories **VBF** categories $1.8 \pm 1.0 \ (\pm 1.0 \ , \pm 0.2 \)$ 1.2 \pm 0.6 (\pm 0.6 , $^{+0.2}_{-0.1}$) Combined -5 5 10 20 -10 0 15 Signal strength

Conclusions

- ATLAS has made a lot of progress in measurements of $H \rightarrow b\overline{b}$ and searches for $H \rightarrow \mu\mu$ decays
 - > 7 analyses updating previous results using the full Run 2 dataset and extending the covered p_T range have been presented
- The analyses probe all 4 main Higgs production modes with many analyses getting a significantly improved sensitivity compared to previous results
- Previous ATLAS results in the $H \rightarrow c\bar{c}$ and $H \rightarrow \tau\tau$ channels are included in the table for completeness

Analysis	Observed Signal Strength
Boosted $H \rightarrow b\overline{b}$	$\mu_H = 0.7 \pm 3.3$
$\underline{VBF} H \to b\overline{b}$	$\mu_{VBF} = 0.95^{+0.38}_{-0.36}$
$\underline{VBF} H(\rightarrow b\overline{b}) + \gamma$	$\mu_{VBF}=1.3\pm1.0$
VBF Combined	$\mu_{VBF} = 0.99^{+0.36}_{-0.34}$
VH, $H \rightarrow b\overline{b}$ Resolved	$\mu_{VH} = 1.02^{+0.18}_{-0.17}$
VH, $H \rightarrow b\overline{b}$ Boosted	$\mu_{VH} = 0.72^{+0.39}_{-0.36}$
$t\bar{t}H \rightarrow b\bar{b}$	$\mu_{t\bar{t}H} = 0.43^{+0.33}_{-0.33}$
<u>ZH, <i>H</i> → <i>cc</i></u>	$\mu_{ZH}=-69\pm101$
$\underline{H \rightarrow \mu\mu}$	$\mu_H=1.6\pm0.6$
$\underline{H \rightarrow \tau \tau}$	$\mu_H = 1.09^{+0.35}_{-0.30}$

Additional Material

ATLAS Detector

Run 2 Luminosity

Total 139 fb⁻¹ with an uncertainty of 1.7% of 'good-for-physics' integrated luminosity for Run 2

Analysis	Luminosity [fb ⁻¹]
Boosted $H \rightarrow b\overline{b}$	136
VBF H	126
$VBF\ H + \gamma$	132
VH Resolved	139
VH Boosted	139
tŦH	139
$H \rightarrow \mu \mu$	139

Boosted $H \rightarrow b\overline{b}$: Event Selection Summary

	Inclusive Fiducial			Differ	rential			
			S	ignal Regio	ons			
Jet Order [*]	Lead	Sublead	Lead	Sublead	Lead	Sublead	Lead	Sublead
Jet $p_{\rm T}$ [GeV]	>450	>250	>450	>450	>1000	_	$\begin{array}{c} 450 - 650, \\ 650 - 1000 \end{array}$	$250-450, \\ 450-650, \\ 650-1000$
			Fic	ducial Volu	mes			
$p_{\mathrm{T}}^{H} \; [\mathrm{GeV}]$	_	_	>450	>450	>1000	_	450-650, >650	$\begin{array}{r} 300-450, \\ 450-650, \\ >650 \end{array}$
			$t\overline{t}$ (Control Reg	gions			
$J_t p_{\rm T} \; [{\rm GeV}]$	>	>250	>	>450	>	1000	250- 450- 650-	-450, -650, -1000

VBF *H*: Event Selection Summary

Forward Channel Event Selection

- $b_1 \ge 1$ *b*-tagged jet at 77% efficiency working point with $p_T > 85$ GeV and $|\eta| < 2.5$
- $b_2 \ge 1$ *b*-tagged jet at 85% efficiency working point with $p_T > 65$ GeV and $|\eta| < 2.5$
- $j_1 \ge 1$ jet with $p_T > 60$ GeV and $3.2 < |\eta| < 4.5$

$$j_2 \ge 1$$
 jet with $p_T > 30$ GeV and $|\eta| < 4.5$

 $p_{T,bb} > 150 \text{ GeV}$

Central Channel Event Selection

 $b_1, b_2 \ge 2 b$ -tagged jets at 77% efficiency working point with $p_T > 65$ GeV and $|\eta| < 2.5$

$$j_1 \ge 1$$
 jet with $p_T > 160$ GeV and $|\eta| < 3.1$

$$j_2 \ge 1$$
 jet with $p_T > 30$ GeV and $|\eta| < 4.5$

no jets with $p_{\rm T} > 60$ GeV and $3.2 < |\eta| < 4.5$

 $p_{T,bb} > 150 \text{ GeV}, m_{jj} > 800 \text{ GeV}$

VBF $H + \gamma$: Event Selection Summary L1 ≥ 1 photon with $E_{\rm T} > 22 \,{\rm GeV}$ ≥ 1 photon with $E_{\rm T} > 25 \,{\rm GeV}$ Trigger ≥ 4 jets (or ≥ 3 jets and ≥ 1 *b*-jet) with $E_{\rm T} > 35 \,{\rm GeV}$ and $|\eta| < 4.9$ HLT $m_{ii} > 700 \,\mathrm{GeV}$ ≥ 1 photon with $E_{\rm T} > 30 \,{\rm GeV}$ and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$ ≥ 2 b-jets with $p_{\rm T} > 40 \,{\rm GeV}$ and $|\eta| < 2.5$ Offline ≥ 2 jets with $p_{\rm T} > 40 \,{\rm GeV}$ and $|\eta| < 4.5$ $m_{ii} > 800 \,{\rm GeV}$ $p_{\rm T}(b\bar{b}) > 60 \,{\rm GeV}$ No electrons $(p_{\rm T} > 25 \,{\rm GeV}, |\eta| < 2.47)$ or muons $(p_{\rm T} > 25 \,{\rm GeV}, |\eta| < 2.5)$

$t\bar{t}H(H \rightarrow b\bar{b})$: Event Selection Summary

Region	Dilepton		Single-lepton			
	$\mathrm{SR}^{\geq 4j}_{\geq 4b}$	$CR_{3b \text{ hi}}^{\geq 4j}$ $CR_{3b \text{ lo}}^{\geq 4j}$	$CR_{3b hi}^{3j}$	$\mathrm{SR}^{\geq 6j}_{\geq 4b}$	$CR^{5j}_{\geq 4b \text{ hi}} CR^{5j}_{\geq 4b \text{ lo}}$	$_{\rm D} {\rm SR}_{\rm boosted}$
#leptons		= 2			= 1	
#jets		≥ 4	= 3	≥ 6	= 5	≥ 4
@85%		—			≥ 4	
	_			_	$\geq 2^{\dagger}$	
#0-tag @70%	≥ 4	= 3			≥ 4	-
@60%		= 3 < 3	= 3		$\geq 4 < 4$	
#boosted cand.		_			0	≥ 1
Fit input	BDT	Yield		BDT/Yield	$\Delta R^{\mathrm{avg}}_{bb}$	BDT

$VH \rightarrow b\bar{b}$: Resolved Event Selection Summar

Selection 0-lepton		1-lej	pton	2-lepton
Selection		e sub-channel	μ sub-channel	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 <i>loose</i> leptons	Exactly 1 tight electron 0 additional loose leptons $p_{\rm T} > 27 \text{ GeV}$	Exactly 1 tight muon 0 additional loose leptons $p_{\rm T} > 25~{\rm GeV}$	Exactly 2 loose leptons $p_{\rm T} > 27 \text{ GeV}$ Same-flavour Opposite-sign charges ($\mu\mu$)
$E_{ ext{T}}^{ ext{miss}} \ m_{\ell\ell}$	> 150 GeV	$> 30 { m GeV}$	_	$e^{-81~{ m GeV}} < m_{\ell\ell} < 101~{ m GeV}$
Jet $p_{\rm T}$		> 20 GeV for $ \eta $ > 30 GeV for 2.5 <	< 2.5 $ \eta < 4.5$	
$b\text{-jets}$ Leading $b\text{-tagged}$ jet p_{T}		Exactly 2 <i>b</i> -tagge $> 45 \text{ GeV}$	ed jets	
Jet categories	Exactly 2 / Exactly 3 jets	Exactly 2 / I	Exactly 3 jets	Exactly 2 / \geq 3 jets
$ \begin{array}{c} H_{\rm T} \\ \min[\Delta\phi(\vec{E}_{\rm T}^{\rm miss}, {\rm jets})] \\ \Delta\phi(\vec{E}_{\rm T}^{\rm miss}, \vec{bb}) \\ \Delta\phi(\vec{b_1}, \vec{b_2}) \\ \Delta\phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\rm miss}) \end{array} $	> 120 GeV (2 jets), >150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° $< 140^{\circ}$ $< 90^{\circ}$	-	- - - -	
	_		-	$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}$
$p_{\rm T}^V$ regions	$150~{\rm GeV} < p_{\rm T}^V < 250~{\rm GeV}$	$150 \text{ GeV} < p_{\mathrm{T}}^{V}$	$V_{ m C} < 250~{ m GeV}$	$150 \text{ GeV} < p_{\mathrm{T}}^{V} < 250 \text{ GeV}$
	$p_{\rm T}^V > 250 { m ~GeV}$	$p_{\mathrm{T}}^{V} > 25$	$50 \mathrm{GeV}$	$p_{ m T}^V > 250 { m GeV}$
Signal regions		$\Delta R(\vec{b_1}, \vec{b_2})$ signal s	selection	
Control regions		High and low $\Delta R(\vec{b_1}, \vec{b_2})$	$\frac{1}{2}$) side-bands	

$VH \rightarrow b\overline{b}$: Resolved BDT Variables

Variable	0-lepton	1-lepton	2-lepton
m_{bb}	×	×	×
$\Delta R(\vec{b_1},\vec{b_2})$	×	×	×
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×
$\Delta \phi(ec V, b ec b)$	×	×	×
$MV2(b_1)$	×	×	
$MV2(b_2)$	×	×	
$ \Delta\eta(ec{b_1},ec{b_2}) $	×		
$m_{ m eff}$	\times		
$p_{\mathrm{T}}^{\mathrm{miss,st}}$	×		
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m^W_{ m T}$		×	
$ \Delta y(ec v, bec b) $		×	
$m_{ m top}$		\times	
$ \Delta \eta (ec V, ec b ec b) $			×
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×
$m_{\ell\ell}$			×
$\cos heta(ec{\ell^-},ec{Z})$			×
	Only	v in 3-jet ev	vents
$p_{ m T}^{ m jet_3}$	×	×	×
$\bar{m_{bbj}}$	×	×	×

$VH \rightarrow b\bar{b}$: Boosted Event Selection Summary

Selection	0 lepton channel	1 lepton	channel	2 leptons channel		
		e sub-channel	μ sub-channel	e sub-channel	$\mu \text{ sub-channel}$	
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single electron	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single electron	$E_{\mathrm{T}}^{\mathrm{miss}}$	
Leptons	0 baseline leptons	1 signal	lepton	2 baseline leg	otons among wh <mark>ich</mark>	
		$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	$\geq 1 \ signal \ let$	pton, $p_{\rm T} > 27 {\rm GeV}$	
		no second ba	seline lepton	both leptons	of the same flavour	
				_	opposite sign m <mark>uons</mark>	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 { m ~GeV}$	$> 50 { m GeV}$	-		-	
$-p_{\mathrm{T}}^{V}$	$p_{ m T}^V > 250~{ m GeV}$					
Large- R jets		at least one large-R jet, $p_{\rm T} > 250$ GeV, $ \eta < 2.0$				
Track-jets	at least two t	at least two track-jets, $p_{\rm T} > 10$ GeV, $ \eta < 2.5$, matched to the leading large-R jet				
<i>b</i> -jets	leading two track	k-jets matched to	the leading large	-R must be b -tagg	ged (MV2c10, 70%)	
$m_{ m J}$			$> 50 { m ~GeV}$			
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small}\text{-}R \mathrm{jets})]$	$> 30^{\circ}$			-		
$\Delta \phi(ec{E}_{ m T}^{ m miss},H_{ m cand})$	$> 120^{\circ}$	-				
$\Delta \phi \ (\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T}, \mathrm{trk}}^{\mathrm{miss}})$	< 90° -					
$\Delta y(V, H_{ ext{cand}})$	$- \qquad \Delta y(V, H_{\rm cand}) < 1.4$					
$m_{\ell\ell}$		-		66 GeV <	$m_{\ell\ell} < 116 { m ~GeV}$	
Lepton $p_{\rm T}$ imbalance		-		$(p_{\mathrm{T}}^{\ell_1} - p_{\mathrm{T}})$	$(p_{\rm T}^{\ell_2})/p_{\rm T}^Z < 0.8$	

$VH \rightarrow b\overline{b}$: Boosted Analysis Regions

	Categories					
Channel	$250 < p_{\rm T}^V < 400 { m ~GeV}$			p	$_{\rm T}^V \ge 400 {\rm ~GeV}$	
	0 add. b-	track-jets	≥ 1 add.	0 add. b -	track-jets	≥ 1 add.
	0 add.	≥ 1 add.	b-track-jets	0 add.	≥ 1 add.	<i>b</i> -track-jets
	small- R jets	small- R jets		small- R jets	small- R jets	
0-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
1-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
2-lepton		SR			SR	

$H \rightarrow \mu \mu$: Event Selection Summary

	Selection
Common preselection	Primary vertexTwo opposite-charge muonsMuons: $ \eta < 2.7$, $p_T^{\text{lead}} > 27 \text{ GeV}$, $p_T^{\text{sublead}} > 15 \text{ GeV}$ (except VH 3-lepton)
Fit Region	$110 < m_{\mu\mu} < 160 \text{GeV}$
Jets	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4 or with $p_{\rm T}$ > 30 GeV and 2.4 < $ \eta $ < 4.5
$t\bar{t}H$ Category VH 3-lepton Categories VH 4-lepton Category ggF +VBF Categories	at least one additional <i>e</i> or μ with $p_{\rm T} > 15$ GeV, at least one <i>b</i> -jet (85% WP) $p_{\rm T}^{\rm sublead} > 10$ GeV, one additional <i>e</i> (μ) with $p_{\rm T} > 15(10)$ GeV, no <i>b</i> -jets (85% WP) at least two additional <i>e</i> or μ with $p_{\rm T} > 8, 6$ GeV, no <i>b</i> -jets (85% WP) no additional μ , no <i>b</i> -jets (60% WP)