A handle on anomalous top-Higgs couplings in top quark pair production through EW loops based on [arXiv:2104.04277]

Till Martini

(Till dot Martini at Physik dot HU-Berlin dot de)

Humboldt-Universität zu Berlin - Phänomenologie der Elementarteilchenphysik

in collaboration with Markus Schulze, Meng Xiao & Ren-Qi Pan

2021 Phenomenology Symposium, May 25th 2021

Motivation

The LHC is a top quark factory:

• Top quark produced $\approx 240 \times 10^6$ times in Run-2 ($\approx 160~{\rm fb}^{-1}$) (1000× more than at Tevatron)

Main top quark dynamics predictable at percent level:

- NNLO+NNLL QCD predictions for single and pair production [Czakon,Fiedler,Heymes,Mitov].[Brucherseifer,Caola,Melnikov].[Berger,Gao,Yuan,Zhu], [Czakon,Mitov,Sterman].[Beneke,Czakon,Falgari,Mitov,Schwinn].[Beneke,Falgari,Klein,Schwinn].[Kidonakis], [Ferroglia,Pecjak,Yang].[Ferroglia,Marzani,Pecjak,Yang].[Czakon,Ferroglia,Heymes,Mitov,Pecjak,Scott]
- Decay known to NNLO QCD (↔ prod. via NWA and beyond) [Gao,Li,Zhu],[Brucherseifer, Caola, Melnikov],[Bevilacqua,Czakon,v.Hameren,Papadopoulos,Worek], [Denner,Dittmaier,Kallweit,Pozzorini],[Heinrich,Maier,Nisius,Schlenk,Winter], [Frederix,Frixione,Papanastasiou,Prestel,Torrielli],[Denner,Pellen]
- EW corrections known for production and width [Beenakker,Denner,Hollik,Mertig,Sack,Wackeroth].[Kühn,Scharf,Uwer],[Bernreuther,Fücker,Si], [Moretti,Nolten,Ross].[Groote,Körner,Mauser],[Basso,Dittmaier,Huss,Toggero]

Top quark sector ideal lab for New Physics searches!

Dimension-six operators in SMEFT

Deviations from the SM parametrised within EFT

Focus on electroweak top quark interactions E.g. (SMEFT in Warsaw basis [Dedes,Materkowska,Paraskevas,Rosiek,Suxho'17]):

$$Ztt: \mathbf{Q}_{33}^{\varphi q \mathbf{1}} = (\varphi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \varphi) (\bar{q}'_{3 \mathrm{L}} \gamma^{\mu} q'_{3 \mathrm{L}}) \quad \leftrightarrow \mathbf{C}_{33}^{\varphi q \mathbf{1}},$$

 $Ztt, Wtb, \chi tt, \phi tb: Q_{33}^{\varphi q3} = (\varphi^{\dagger} i \tau^{I} \overleftrightarrow{D_{\mu}} \varphi) (\bar{q}'_{3 L} \tau^{I} \gamma^{\mu} q'_{3 L}) \leftrightarrow C_{33}^{\varphi q3},$

$$Ztt, \chi tt: \mathbf{Q}_{33}^{\varphi u} = (\varphi^{\dagger} \mathrm{i} \, \overline{D}_{\mu} \varphi) (\overline{t}_{\mathrm{R}}^{\prime} \gamma^{\mu} t_{\mathrm{R}}^{\prime}) \quad \leftrightarrow \mathbf{C}_{33}^{\varphi u},$$

$$Htt: \ \ Q^{\mu\varphi}_{33} = \qquad (\varphi^{\dagger}\varphi)(\bar{q}'_{3\,\mathrm{L}}\,t'_{\mathrm{R}}\tilde{\varphi}) \qquad \leftrightarrow \ C^{\mu\varphi}_{33}$$

On-shell vs. loop sensitivity [Schulze, TM'20]

Previous study: Focus on anomalous Ztt: $C_{33}^{\varphi u}$ & $C_{33}^{\varphi q3}$

95% C.L. limit

- Sensitivity in $t\bar{t}Z$: low rate (coupling, threshold, BR), known to NLO QCD ($\approx \pm 15\%$ scale unc.)
- $t\bar{t}$ sensitive via EW loops: $\approx 100 \times$ more events, QCD background known to NNLO+NNLL ($\approx \pm 5\%$ scale unc.), Sudakov enhancement in diff. distrib., requires EW NLO calculation within SMEFT

300 fb⁻¹

0.2

Promising way to constrain New Physics!

Parametrizing CP-scenarios of the top Yukawa coupling

Next step: Focus on anomalous *Htt*: $C_{33}^{\mu\varphi}$

Including $Q_{33}^{\mu\varphi}$ in the Lagrangian yields modified Feynman rules:

$$\Gamma_{Htt}^{\rm EFT} = \frac{-im_t}{v} + \frac{iv^2}{\sqrt{2}\Lambda^2} \left(P_{\rm L} C_{33}^{u\varphi}^* + P_{\rm R} C_{33}^{u\varphi} \right) / w P_{\rm R/L} = \frac{1}{2} (1 \pm \gamma_5)$$

Definitions:
$$\kappa = 1 - \frac{v}{\sqrt{2}m_t} \frac{v^2}{\Lambda^2} \operatorname{Re}(C_{33}^{u\varphi})$$
, $\tilde{\kappa} = -\frac{v}{\sqrt{2}m_t} \frac{v^2}{\Lambda^2} \operatorname{Im}(C_{33}^{u\varphi})$

$$\Rightarrow \boxed{ \Gamma_{Htt}^{\kappa,\tilde{\kappa}} = \frac{-\mathrm{i}m_t}{v} \left(\kappa + \mathrm{i}\gamma_5 \tilde{\kappa} \right) }$$
CP even CP odd

- 0⁻ states inherent to, e.g., SUSY or two-Higgs-doublet models (CP violation required to explain baryon asymm. [Sakharov'91])
- Arbitrary CP-mixing possible via $\kappa, \tilde{\kappa}$
- SM recovered for $\kappa=1$ and $\tilde{\kappa}=0$

Loop sensitivity on $\kappa, \tilde{\kappa}$ in $t\bar{t}$ production

Calculational details — modified amplitudes

- Final state corrections depending on $\kappa, \tilde{\kappa}$ in *s*-channel *gg* and $q\bar{q}$: $\overline{q} + \overline{q}$
- Loop diagrams depending on $\kappa, \tilde{\kappa}$ in *t*-channel *gg*:

Due to coupling structure in $\Gamma_{Htt}^{\kappa,\tilde{\kappa}}$, interference of diagrams with Higgs loops and Born level either $\propto (\kappa^2 + \tilde{\kappa}^2)$ or $\propto (\kappa^2 - \tilde{\kappa}^2)$.

\Rightarrow No sensitivity on signs of $\kappa, \tilde{\kappa}$

Loop diagrams involving the Higgs boson are IR finite but contain UV poles \Rightarrow Renormalization necessary within SMEFT One-loop amplitude is UV finite after renormalization!

Loop sensitivity on $\kappa, \tilde{\kappa}$ in $t\bar{t}$ production

Calculational details — numerical evaluation

We build upon the existing SM implementation of $t\bar{t}$ -production at NLO EW in MCFM and allow for arbitrary top Yukawa couplings

- Analytic results of our calculation available as external add-on: https://github.com/TOPAZdevelop/MCFM-8.3_EWSMEFT_ADDON
- MCFM results reproduced when setting $\kappa=1, \tilde{\kappa}=0$
- MCFM established framework able to produce multi-dim. kinematic distributions together with EW correction factor

$$\delta^{\kappa, ilde{\kappa}}_{
m wk} = rac{d\sigma^{
m NLO~EW}_{\kappa, ilde{\kappa}} - d\sigma^{
m LO}}{d\sigma^{
m LO}}$$

• $\delta_{wk}^{\kappa,\tilde{\kappa}}$ can be used to reweight distributions generated by LO+PS+DetectorSim. generators

Note: Higgs loops with scalable κ (CP even only) available in HATHORv2.1 and resp. study done by CMS [Phys.Rev.D100 7,(2019)072007]

Dependence of the shapes on $\kappa, \tilde{\kappa}$ $\Delta y_{t\bar{t}}$ and $M_{t\bar{t}}$ sensitive to CP structure of top Yukawa coupling 0.15 |=0, |k|=0 =0, [~]=0 0.08 |κ|=1, |κ̃|=0 |ĸ|=1. |ĸ̃|=0 $\kappa = 0, |\tilde{\kappa}| = 1$ κ|=0, |κ̃|=1 $(d\delta\sigma_{weak}/d\Delta y_{t\bar{t}})/(d\sigma_{LO}/d\Delta y_{t\bar{t}})$ $(d\delta\sigma_{weak}^{eak}/dM_{t\bar{t}t})/(d\sigma_{LO}/dM_{t\bar{t}t})$ 0.06 =2. lkl=0 κl=2. l̃κl=0 $|=0, |\tilde{\kappa}|=2$ 0.04 κ|=2, |κ̃|=2 |ĸ|=2, |ĸ̃|=2 0.02 0.02 -0.04 -0.1 -0.06 -0.08 -0.15 500 -3 _2 S 400 _1 600 700 800 900 1000 1100 1200 $\Delta y_{t\bar{t}}$ M_{..} [GeV]

Event simulation and analyses

Loop sensitivity: $t\bar{t}$ (semileptonic channel)

- Top quark pair events simulated by MadGraph5_v2.6.4+Pythia8.1+Delphes3 (CMS setting)
- Simulated events are normalized to $\sigma_{t\bar{t}}^{\rm NNLO~QCD} = 832^{+40}_{-46}~{\rm pb}$
- 2-dim distribution of $M_{t\bar{t}}$ and $\Delta y_{t\bar{t}}$ filled with events
- 2-dim distrib. can be reweighted with $\delta_{wk}^{\kappa,\tilde{\kappa}}$ from modified MCFM
- Main background: single top, V+jets and QCD multijets

On-shell benchmark: e.g. tHW (full hadr. channel and $H \rightarrow \gamma\gamma$)

- Events with top and antitop quarks simulated by JHU Generator+Pythia8.1+Delphes3 (CMS setting)
- Differential cross sections for different hypotheses implemented in JHU Generator
- MELA (matrix element likelihood approach): 3 discriminants
- Main background: tTH

Results

Results

Fractional contribution of the CP-odd component

$$f_{\mathsf{CP}} = rac{|\tilde{\kappa}|^2}{|\kappa|^2 + |\tilde{\kappa}|^2} \mathrm{sign}\left(rac{\tilde{\kappa}}{\kappa}\right)$$

Likelihood scans of f_{CP}

 $t\bar{t}H$ and tHq results taken from [Gritsan,Röntsch,Schulze,Xiao'16]

- Probing CP structure of top Yukawa coupling through EW loops
 - Calculation of EW correction to $pp
 ightarrow t ar{t}$
 - NP included via SMEFT parametrisation of Htt coupling
- Comparison to direct on-shell probes, e.g., $pp \rightarrow tHW$ with full-fledged simulation chain
 - $t\bar{t}$ expected to exclude $|f_{CP}| > 0.81$ for 300 fb⁻¹ and $|f_{CP}| > 0.67$ for 3000 fb⁻¹ at 95% CL
 - tHW can exclude pure pseudo-scalar model at 2σ for 300 fb^{-1} and $|f_{\rm CP}|>$ 0.48 for 3000 fb^{-1} at 95% CL
 - tHq gives most stringent 95% CL exclusion: $|f_{CP}|>0.68$ for 300 fb^{-1} and $|f_{CP}|>0.22$ for 3000 fb^{-1}
 - $t\bar{t}$ best probe to exclude purely CP-odd top Yukawa coupling
- $t\bar{t}$ and tHW with anomalous top Yukawa couplings available as add-on to MCFM or via JHU Generator respectively