

Recent Higgs measurements in CMS

Soumya Mukherjee, TIFR, Mumbai, India

On behalf of CMS Collaboration, LHC, CERN.

25th May, 2021

May 24-26, 2021 (Virtual) University of Pittsburgh

Higgs productions, couplings and decays at the LHC

Higgs searches at the LHC

Run-1: $\sqrt{s}=7$, 8 TeV $\int L dt = 5 \text{ fb}^{-1}$, 19 fb⁻¹

- \rightarrow Discovery of Higgs bosons
- \rightarrow Measurement total cross sections in different modes
- \rightarrow Characterization: mass, spin, coupling with vector bosons

Run-2: 13 TeV, ∫L dt = 137 fb⁻¹

\rightarrow two fold gain

(i) increase in Higgs cross section

- (ii) higher luminosity helps to probe and establish rarer decays
- \rightarrow Precision measurement of Higgs properties (mass, couplings)
- \rightarrow Differential cross sections
- \Rightarrow Use Higgs as a probe for new physics.

Common strategy for CMS analyses:

(i) Multivariate analysis techniques based on **boosted decision** trees (BDT) or, **Deep Neural Network (DNN)** to discriminate signals from backgrounds
 (ii) Events categorized to achieve best sensitivity.

Couplings with Vector bosons (V): $C_V \propto rac{M_V^2}{v}$ Couplings with fermions (f): $y_f \propto rac{m_f}{v}$

Measurement of Higgs couplings in κ - framework ($\kappa_{V}, \kappa_{t}, \kappa_{b}, \kappa_{\gamma}, \dots$) κ = (Observed Higgs coupling) / (Standard Model predicted value) κ = 1 \Rightarrow Standard Model (SM)

Signal strength (μ) =($\sigma * Br$)^{obs} / ($\sigma * Br$)SM

Combined Higgs mass measurement

Combination of 2 high resolution channels: $H \rightarrow \gamma \gamma$ with $H \rightarrow ZZ^* \rightarrow 4l$

using 2016 data (~36/fb) and Run-1 data (~25/fb)

 $m_{_{
m H}}$ = 125.38 \pm 0.11 (stat) \pm 0.08 (sys) GeV

- \rightarrow total uncertainty ~ 0.21% , dominated by stat (0.14%).
- \rightarrow currently the most precise measurement

$H \rightarrow \mu\mu$ study using full Run-2 data

Experimental confirmation of $H \rightarrow \mu\mu$ decay is crucial to establish Higgs interaction with 2nd generation fermions.

But extremely low branching fraction: 2.18 * 10⁻⁴

- \rightarrow requires high luminosity
- \rightarrow used complete Run-2 data
- \rightarrow Tragets all production modes
- \rightarrow overwhelming continuum background from **Drell-Yan**

Signal extraction:

 \rightarrow VBF categories by performing template fit of DNN output score.

 \rightarrow For other production modes (ggH, VH, ttH), by fitting dimuon invariant mass (m_{ull}) spectrum

JHEP 01 (2021) 148

Results from $H \rightarrow \mu\mu$ study

 \rightarrow First evidence of H $\rightarrow \mu\mu$ process at the LHC

 \rightarrow Observed (expected) signal significance: **3.0** (2.5) σ

 \rightarrow Signal strength μ = 1.19 $^{+44}_{-0.42}$ @68%

 \rightarrow Observed best fit value of κ_{μ} : 1.07 $^{+$ 0.29}_{-0.15} @ 68% CL

 \rightarrow Most constrained measurement of κ_{μ} till date.

JHEP 01 (2021) 148

ttH + tH: multilepton study

- ttH : probe magnitude of top Yukawa coupling (y_t) tH : provides the sign of y_t wrt C_v
- $\succ \quad \text{Categories based on flavour and number of final state leptons} \\ (L:e, \mu, hadronic tau \tau_h) \\ (i) \quad H \to WW: 2L SS + 0\tau_h, 3L SS + 0\tau_h, 4L SS + 0\tau_h \\ (ii) \quad H \to ZZ: 3L + 0\tau_h, 4L + 0\tau_h \\ (iii) \quad H \to \tau\tau: 2L SS + 1\tau_h, 0L + 2\tau_h, 1L + 1\tau_h, 1L + 2\tau_h, 2L + 2\tau_h \\ \text{SS: same sign} \to \text{reduced background by large factor} \end{cases}$
- \succ BDT output score used for the extraction of signal for each category

Signal strength:

• $\mu(ttH) = 0.92^{+0.19}_{-0.19} (stat)^{+0.17}_{-0.13} (syst)$

Observed (expected) signal significance: $4.7(5.2) \sigma$

• $\mu(tH) = 5.7^{+02.7}_{-2.7} (stat)^{+3.0}_{-3.0} (syst)$

EPJC 81 (2021) 378

VH (V = W/Z), $H \rightarrow WW$ to multileptons

- Pure process for probing H coupling to vector bosons (C_v)
- Events with at least one leptonically decaying W in e_{μ} modes.
- Final states marked by number, charge and flavour of leptons
- ↔ WH same-sign (SS) lepton category has the best sensitivity
 - \rightarrow compatible with SM

CMS PAS HIG-19-017

Observed signal significance: 4.7σ Signal strength: $\mu = 1.85^{+0.33}_{-0.32}$ (stat) $^{+0.25}_{-0.25}$ (syst) $^{+0.10}_{-0.07}$ (theo)

Inclusive boosted Higgs production and decay to bb

- **\Box** Suitable to measure Hbb Yukawa coupling (y_b)
- □ High end p_{T}^{H} can resolve loop-induced contributions to the ggH process from new particles

JHEP 12 (2020) 085

Analysis strategy:

- Serious background from tt production, controlled by
 - \rightarrow missing transverse energy < 140 GeV
- \rightarrow lepton veto, no b-jets in opposite hemisphere Signal extraction by fitting jet mass distribution

Obs. (exp.) signal significance: **2.5 (0.7)** σ Signal strength: $\mu = 3.7^{+1.2}_{-1.2} (\text{stat})^{+0.6}_{-0.7} (\text{syst})^{+0.8}_{-0.5} (\text{theo})$

Simplified template cross section (STXS)

- Increased luminosity of Run-2 \rightarrow probe BSM using H measurement as a tool
- Fine-grained measurements for individual or inclusive Higgs production modes in various kinematic regions
- Differential distributions in p^{H}_{T} , njets, ..
- Minimizing theory dependence
- Maximizing experimental sensitivity
- Used as common framework in all decay modes \rightarrow optimum for combined interpretation

Inclusive production of H+X \rightarrow WW* \rightarrow leptons (e[±], μ^{\pm} modes only)

STXS analysis for $H{\rightarrow}\,\gamma\gamma$

arXiv: 2103.06956 Accepted by JHEP

11

STXS study for $H{\rightarrow}$ yy

arXiv: 2103.06956 Accepted by JHEP

Decent sensitivity for STXS bins in all production modes

Results of STXS study of $H{\rightarrow}\,\gamma\gamma$ study

arXiv: 2103.06956 Accepted by JHEP

Correlation between categories

Summary

- **CMS** continues to explore various aspects of Higgs physics from abundant to rare decay modes.
- □ The standard model predicted H interaction with lower mass particles are coming into view: **First evidence of H** → $\mu\mu$
- **\Box** Exploring more detailed kinematic regions to probe BSM from STXS study (recently in $H \rightarrow \gamma \gamma$)
- Understanding of Higgs potential from HH studies are also being carried in various final states:

 \rightarrow talk by Lata Panwar

What's next?

- □ Even after 2.5 years of completing Run-2 data taking, analyses not yet over in several fronts of Higgs → stay tuned!
- □ Continue precision measurements
- **G** Focus to establish other rare processes
- □ Rigorous searches for BSM signature
- □ More interesting physics results and bold understandings will come in next run.

Thank you and be safe

HH searches in CMS

HH decay modes being explored using **full Run2** * Higgs potential : $V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$ (137 fb⁻¹) data: Modes with large branching ratios (BR) utilized * Expanding about the minimum: $V(\phi) = -V(v + h)$ for at least one of the H decays : bb (58%) and WW*(21%) \succ $V = V_0 + \frac{1}{2}m_h^2h^2 + \frac{m_h^2}{2\gamma^2}vh^3 + \frac{1}{4}\frac{m_h^2}{2v^2}h^4$ $HH \rightarrow 4b$, $bb\tau\tau$, **bbyy**, bbWW, bbZZ, 4W, WW $\tau\tau$, * 4τ , WW $\gamma\gamma$ Higgs mass Tri-linear Higgs self Quarti-linear Higgs self coupling (λ_{HHHH}) coupling ($\lambda_{\mu\mu\nu}$) term In SM : $\lambda_{
m HHH}=\lambda_{
m HHHH}=rac{{
m m}_{
m H}^2}{2{
m v}^2}=0.13$

- Leads to EWK symmetr H in H is assess of other standard model particles
- Measuring λ important because it probes the shape of the Higgs potential
- HH production at the LHC provides access to $\lambda : \rightarrow$ **Detailed talk by Lata Panwar**