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Main Questions

• Is it possible to produce both the observed DM energy density and 
baryon asymmetry?
• What is the viable mass-lifetime parameter space for Φ?
• What are the prospects for probing our model at colliders?

• How heavy can the dark matter mass eigenstates be?
• Can we satisfy structure formation constraints?
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Step 2: Produce lepton flavor asymmetry
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= B/3-L  charge densities

Step 2: Produce lepton flavor asymmetry
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Quantum Kinetic Equations
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asymmetries “seed” a flavor summed asymmetry, which is converted to a baryon asymmetry

SM Processes

SM Yukawas

Sphalerons

Cline, arXiv:0609145
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Favored Parameters

1. Heavier 𝜒 means smaller couplings to 
match DM energy density. To have 
large enough asymmetry, typically 
need 𝑀!! < 100 keV

2. Oscillation timescale ∝ 1/Δ𝑀!
", want 

appreciable fraction of an oscillation 
to occur by T ~𝑀# for leptogenesis

3. (1) and (2) make optimal Φ masses in 
the hundreds of GeV to TeV range
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Asymmetry Generating Scenarios:

Single Scalar
• Asymmetry arises at order F6, making it 

challenging to get large enough asymmetry 
without overproducing DM

• Loophole: Φ might preferentially decay to a 
very light (sub-keV) 𝜒 mass eigenstate, 
suppressing the DM energy density
• Small θ means Φ prefers to decay to 𝜒1
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• Φ!: a stand-in for unspecified source of 
coherent 𝜒 background

• Asymmetry is generated at order F4 from Φ!
decays and Φ" inverse decays

• Small F coupling (F 10-7) leads to longΦ"
lifetimes, (cτ 1 cm are favored if Φ"
couples indiscriminately to 𝜒1 vs. 𝜒2)

Asymmetry Generating Scenarios:

Two ScalarSingle Scalar
• Asymmetry arises at order F6, making it 

challenging to get large enough asymmetry 
without overproducing DM

• Loophole: Φ might preferentially decay to a 
very light (sub-keV) 𝜒 mass eigenstate, 
suppressing the DM energy density
• Small θ means Φ prefers to decay to 𝜒1



Asymmetry Generating Scenarios:

Must be tiny,    10-12

• Asymmetry at order F4λ2
• If λ coupling large enough, it comes into 

equilibrium, so asymmetry effectively arises at 
order F4 (details depend on flavor structure of 𝜆)
• No longer need to take θ to be small, though 

smaller θ leads to an increase in the allowed 
parameter space

Adhikari et al., arXiv: 1602.04816
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Results: 
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Structure formation constraints on mixed cold/warm DM 
are discussed in Kamada, arXiv: 1604.01489
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Experimental Constraints: Colliders

Typical       Parameter 
Space
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Experimental Constraints: Colliders

cτ reach for prompt analyses?

Prompt Decay (Φ decays 100% to µ)

Prompt Decay (Φ decays 50% to µ)

CMS Collaboration, arXiv:2012.08600
ATLAS Collaboration, arXiv: 1908.08215 
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CMS Collaboration, EXO-16-036-pas
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Summary

• We propose a simple model that combines mechanisms for DM 
production and leptogenesis
• Various asymmetry generating scenarios lead to a broad range of 

possibilities for the scalar lifetime
• DM and leptogenesis constraints favor scalar masses in the hundreds 

of GeV to TeV range


