Multi-TeV Signals of Baryogenesis in Higgs Troika Model arxiv:2103.12089, submitted to PRD

Matthew Sullivan¹, Hooman Davoudiasl¹, Ian M. Lewis²

> ¹Brookhaven National Laboratory ²University of Kansas

Pheno 2021, May 24

- Cosmological observations give a baryon asymmetry of $\frac{n_B}{s} \approx 9 \times 10^{-11}$
- Sakharov conditions are necessary for dynamical production of baryon asymmetry
 - Baryon number violation
 - C and CP violation
 - Interactions out of thermal equilibrium

- Baryon number violation is already present in the SM
 - Non-perturbative sphalerons (electroweak vacuum transitions)
- CP violation in the SM is not big enough
 - CKM matrix (SM) and PMNS matrix (BSM, strictly speaking) have CP phases, but not enough for the observed asymmetry
- A few options for out of equilibrium dynamics:
 - Heavy particles decaying out of thermal equilibrium (e.g. leptogenesis)
 - First-order phase transition (e.g. electroweak baryogenesis)

Introducing the Troika: Three Higgs Doublets

- Standard Model (SM) has three generations of fermions but only one Higgs doublet
- We propose adding two more Higgs doublets (for three total), whose decays in the early universe give the out of equilibrium interaction necessary for baryogenesis
- More Higgs doublets means more Yukawa couplings
 - Flavor physics constraints (or observation opportunities)
 - More potential CP violation sources
- We also add three right handed neutrinos, accommodating (Dirac) neutrino masses
- Our general Troika framework is covered in Phys. Rev. D 101, 055010 (arxiv:1909.02044)

The Higgs Troika Baryogenesis Mechanism

- Before EW symmetry breaking, a population of heavy Higgs doublets H_a is created by the decay of a heavy modulus
- We use an asymmetry of decays of H_3 into a lepton doublet and right-handed neutrino:

$$\varepsilon \equiv \frac{\Gamma(H_a \to \bar{L}\nu_R) - \Gamma(H_a^* \to \bar{\nu}_R L)}{2\Gamma(H_a)}$$

- H_2 is an intermediate state in the loop diagrams
- Asymmetry is enhanced when H_2 and H_3 are close in mass
- Washout constraints for light mediators, plus mass generation, make using *H*₁ difficult without fine-tuning
 - This is why we need two heavy doublets for our mechanism

Yukawa Couplings

$$\lambda_u^{2,3} = \xi \lambda_u^1$$

$$\lambda_d^{2,3} = \operatorname{diag}(\kappa_d, \kappa_s, \kappa_b)$$

$$\lambda_\ell^{2,3} = \xi^\ell \lambda_\ell^1$$

$$\lambda_\nu^{2,3} = \operatorname{diag}(\kappa_{\nu_1}, \kappa_{\nu_2}, \kappa_{\nu_3})$$

- Based on Egana-Ugrinovic, Homiller, Meade's Spontaneous Flavor Violating 2HDM framework (Phys. Rev. D 100, 115041)
 - Added right-handed neutrinos and corresponding Yukawa couplings
 - Add another new doublet with the same coupling structure

- Couplings are in the basis where the down-type quark and charged lepton Yukawa couplings of *H*₁ are flavor-diagonal
- λ_{ℓ}^1 , λ_u^1 are the couplings of H_1 to charged leptons and up-type quarks, respectively
 - Include the PMNS and CKM matrices
- *H*₁ is the source of all mass (including Dirac neutrino masses)
- Put all new CP violating phases into the κ_{ν_i}

Flavor Constraints

FCNC Constraints, $\kappa_s = \kappa_b = 0$, $\xi = 1$ FCNC Constraints, $\kappa_s = \kappa_b = \kappa_d$, $\xi = 1$ 1.0 1.0 0.8 0.8 D mixina D mixina K mixina 0.6 0.6 < mixina $b \rightarrow dv$ P ş $b \rightarrow dv$ b→sy 0.4 0.4 0.2 0.2 5000 10 0 00 15000 20,000 25000 30,000 5000 10 0 00 15000 20 0 00 25 0 0 0 30 0 00 ma (GeV) m_a (GeV)

- Neutral meson mixing and flavor-changing decays provide constraints on the Yukawa couplings
- We show upper bounds from the different experimental constraints on Yukawa coupling κ_d to down-quark for certain choices of κ_s , κ_b , ξ as a function of the mass m_a of the heavy Higgs bosons
 - Assuming all the heavy Higgses have the same mass

Flavor Constraints, cont.

- Same as before, for smaller ξ
- D meson mixing gives the dominant constraint for heavy Higgses
 - Theoretical and experimental improvements for *D* mixing could be a new discovery avenue

Heavy Higgs Discovery Reach at 100 TeV

- Flavor structure allows large couplings to light quarks
 - Allows large production cross sections from quark initial states
 - Decay will primarily be dijets or top pairs
- We show discovery reach in κ_d as a function of the mass m_a of the heavy Higgs bosons, superimposed with flavor constrain bounds, current dijet bounds, and bounds for successful baryogenesis

Heavy Higgs Discovery Reach at 100 TeV, cont.

- Same plots, for lower value of $\xi = 0.1$ (basically top coupling for current purposes)
- Lower mass region opens up for successful baryogenesis

Heavy Higgs Discovery Reach at 100 TeV, cont. 2

- Same plots again, for even lower value of $\xi = 0.01$
- Lower mass region opens up for successful baryogenesis

- Three Higgs doublets can generate the baryon asymmetry of the universe
- No first order phase transition is necessary, unlike electroweak baryogenesis
- High energy hadron colliders can see the heavy Higgses directly
- Precision flavor physics, particularly *D* meson mixing, can provide orthogonal discovery avenues

Thank you!