Simplifying Multidimensional Constraints on Narrow Resonances

Pheno 2021 Monday, May 24, 2021

Based on work presented in [arXiv:2103.06283]

James Osborne (Speaker) Sekhar Chivukula Pawin Ittisamai Elizabeth Simmons

UC San Diego

Introduction

- In this talk we focus on model-independent constraints from narrow resonance searches.
- To maximize the information gained from the LHC, we should also consider combinations of channels.
- How can we best maintain model-independence when combining statistics from multiple channels?
- Here we will focus on the case of combining two channels with an assumed common production mode.

Simplified Limits

- For single channel searches for narrow width resonances, simplified limits were introduced by Chivukula et al. [1607.05525]
- Use the NWA to constrain model-independent products of BRs, $\sigma(ab \to R \to xy) \propto BR_{ab} BR_{xy} \Gamma_R / M_R$.

• By deconvolving the proton PDFs from the constraints, one can parameterize directly in terms of the resonance properties: BR's, Γ_R , and M_R .

Simplified Limits

James Osborne | Pheno 21

May 24, 2021 | Slide 4

[1808.02380] and CMS [1906.00057]

May 24, 2021 | Slide 5

James Osborne | Pheno 21

Combined Constraints

- A natural choice is to combine two observations using a common quantity, $\sigma_{\rm prod}$. This requires one to know the relationship between BRs.
- Mono-channel experimental acceptance is relatively insensitive to specific model assumptions, depending predominantly on the spin and helicity of the resonance.
- This allows us to translate constraints smoothly between models. How can we incorporate this property for multi-channel searches?

Combined Constraints

- Returning to the NWA, recall $\sigma(ab \to R \to xy) \propto BR_{ab} BR_{xy} \Gamma_R / M_R$.
- For three dominant BRs, we can project limits onto a 2D plane using the simple unitarity property
 - $\sum_{i=1}^{J} \mathsf{BR}_i = 1.$
- Of the two remaining degrees of freedom, Γ_R and M_R , can fix one and constrain the other.

Ternary Diagram

Combined Constraints

- Of course, in many cases it is not reasonable to assume that there are only two dominant decay modes.
- The scenario presented here can be trivially extended to models with more decay channels via the rescaling

 $\widetilde{\mathsf{BR}}_{i} \equiv \mathsf{BR}_{i} / (1 - \mathsf{BR}_{other}), \quad \widetilde{\Gamma}_{R} \equiv \Gamma_{R} (1 - \mathsf{BR}_{other})^{2}, \quad \sum^{3} \widetilde{BR}_{i} = 1,$

which leaves σ^{NWA} and the simplified limits variable ζ invariant.

 The focus on a ternary diagram serves to address the question of presentation in a paper. For a given model's parameter space, it is often found that only a few modes provide similar experimental sensitivity.

Combined Constraints $pp \rightarrow \phi \rightarrow VV$

- Making the simplifying assumption $\sigma_{\text{prod}}^{95} = \begin{cases} \sigma_1^{\text{obs}}/\text{BR}_1 & \sigma_1^{\text{exp}}/\text{BR}_1 < \sigma_2^{\text{exp}}/\text{BR}_2, \\ \sigma_2^{\text{obs}}/\text{BR}_2 & \text{otherwise}, \end{cases}$
- We display constraints on a benchmark RS radion,
 A = 3 TeV & kL = 35
- For this example we fix $M_{\phi} = 2.9$ TeV while displaying limits on Γ_{ϕ}/M_{ϕ} . Constraints from ATLAS. [2004.14636]

Production Modes $pp \rightarrow Z' \rightarrow VV$

• When considering mixed production modes, an ambiguity can arise in the simplified parameter,

 $\zeta = \sum_{ab} BR_{ab} BR_{ij} \Gamma_R / M_R.$

- Consider Z' production via Drell-Yan. Produced primarily from $u\overline{u} + d\overline{d}$.
- Without imposing model-specific assumptions about BR_{uū}/BR_{dd}, the strict limit from σ_{prod} × BR becomes a band.
 Constraints from ATLAS. [2004.14636]
 [2007.05293]

Production Modes $pp \rightarrow Z' \rightarrow W^+W^-$

- We display constraints on HVT benchmarks Z',
 A. g_V = 1 (weakly coupled)
 B. g_V = 3 (strongly coupled)
- For this example we fix $M_{Z'} = 3$ TeV while displaying limits on Γ_{ϕ}/M_{ϕ} . Constraints from ATLAS. [2004.14636]

Outlook

- For searches encompassing more than a few independent channels, the principles presented here can be easily extended to larger simplexes.
- Although one can not easily plot a larger simplex, a statistical analysis of the constraints in this parameter space can nevertheless help to understand the shape of the allowed region for a given model.

Conclusion

- We have presented a model-independent method to explore combining narrow resonance searches.
- Ternary diagrams provide a simple method of displaying combined constraints from two channels, and are complimentary to traditional $\sigma \times$ BR limits.
- Larger digital data sets can be stored and distributed for analysis using this simplified limits parametrization and, for example, the HEPdata repository.