Testing Lepton Flavor Universality at the Z Pole

Lingfeng Li (HKUST)

Based on arXiv:2012.00665 with Tao Liu and ongoing projects

Pheno2021, May 25, Pittsburgh

LFUV @ the Z Pole

LFUV *B* Anomalies in FCCC/FCNC

	Experimental	SM Prediction	Comments
	0.046±0.044	1.00 0.01	$-[10, 00] C M^2 + D^{\pm}$
R_K	$0.846_{-0.041}$	1.00 ± 0.01	$m_{\ell\ell} \in [1.0, 6.0]$ GeV ² , via B^{\perp} .
R_{K^*}	$0.69_{-0.09}^{+0.12}$	0.996 ± 0.002	$m_{\ell\ell} \in [1.1, 6.0] \text{ GeV}^2$, via B^0 .
R_{pK}	$0.86^{+0.14}_{-0.11} \pm 0.05$	~ 1	$m_{\ell\ell} \in [0.1, 6.0]$ GeV ² , via Λ_b .
R_D	0.340 ± 0.030	0.299 ± 0.003	B^0 and B^{\pm} combined.
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005	B^0 and B^\pm combined.
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.25-0.28	

[Tanabashi et al., 2018][Altmannshofer et al., 2018]

[Aaij et al., 2021][Aaij et al., 2020].

Also evidence for a BR($B_s \to \phi \mu \mu$), $m^2_{\mu\mu} \in [1,6] \text{ GeV}^2$ below SM by $\sim 3\sigma$ [Aaij et al., 2015]

The physics should be well covered in previous talks...

Unique Opportunities at the Z pole

Z-factories $(10^9 - 10^{13} Zs)$ are also flavor factories:

Channel	Belle II	LHCb	Giga-Z	Tera-Z	$10 \times \text{Tera-}Z$
B^0 , $ar{B}^0$	5.3×10^{10}	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B^{\pm}	$5.6 imes 10^{10}$	$\sim 6 \times 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B_s , $ar{B}_s$	5.7×10^8	$\sim 2 \times 10^{13}$	3.2×10^7	3.2×10^{10}	3.2×10^{11}
B_c^{\pm}	-	$\sim 4 \times 10^{11}$	2.2×10^5	2.2×10^8	2.2×10^9
$\Lambda_b, \bar{\Lambda}_b$	-	$\sim 2\times 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	1.0×10^{11}

VS. B Factories

- Much higher b quark boost (by \$\mathcal{O}(10)\$)
- Better track momentum measurements
- Larger displacements with smaller uncertainty
- Abundant heavy b hadron

VS. Hadron Colliders

- Fixed E_{cm}
- Clean environment
- Direct missing momenta measurement
- Larger detector acceptance
- Better flavor tagging efficiency

LFUV @ the Z Pole

Key Detector Features for Flavor Physics

Materials from talks in the April CEPC meeting

Tracking sys, grants $\mathcal{O}(10)$ fs sensitivity.

- High time precision for CPV measurements.
- Authentic c/τ reconstruction inside a jet.
- Greater acceptance for displaced signals.

Advanced PID coming from the combination of dE(N)/dx method, time resolution and calorimetry:

- Flavor tagging for everything.
- Suppressing backgrounds in general.
- Clean leptonic/baryonic modes.

Calorimetry gives neutral energy and angular resolution.

- ▶ Better p measurement for neutrinos.
- Excited states such as D_s^* and radiative decays.
- Distinguishing $\pi^0/\eta...$, allowing h^0X modes.

LFU Test with $b \rightarrow s \tau \tau$ Measurements

Current $b \to c \tau \nu$ anomalies indicate large enhancement of $b \to s \tau \tau$ rates. [Capdevila et al., 2018] Current experiment constraint on BR $\sim 10^{-2.5}$

$$\delta C_9^{\tau} = -\delta C_{10}^{\tau}$$
$$= \frac{-2\pi V_{cb}}{\alpha V_{tb} V_{ts}^*} \left(\sqrt{\frac{R_X}{R_X^{\text{SM}}}} - 1 \right)$$
$$\sim \mathcal{O}(10) \times C_{9/10}^{\text{SM}}$$

$$O_{9(10)}^{\tau} = \frac{\alpha}{4\pi} [\bar{s}\gamma^{\mu} P_L b] [\bar{\tau}\gamma_{\mu}(\gamma^5)\tau] ,$$

 $O_{9(10)}^{\prime\tau} = \frac{\alpha}{4\pi} [\bar{s}\gamma^{\mu} P_R b] [\bar{\tau}\gamma_{\mu}(\gamma^5)\tau] \,.$

From SM ($\mathcal{O}(10^{-7})$) to $\mathcal{O}(10^{-4})$ Lingfeng Li LFUV @ the Z Pole

May 25, 2021 5 / 12

LFU Test with $b \rightarrow s \tau \tau$ Measurements

Use $\tau \to \pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$ decay to locate each vertex Full reconstruction possible (hard for *B*-factories) Dominant background from inclusive $D^{\pm}_{(s)} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp} + X$ decays $(\mathcal{O}(10^5) \text{ larger as } b \rightarrow c\bar{c}s \text{ is common})$

Clean environment \Rightarrow good bkg rejection (hard for hadron colliders)

Projected Limits

More details in the published work (arXiv:2012.00665) [Li and Liu, 2020]

Constraints on EFT couplings from $\mathcal{O}(10^3)$ (current) $\rightarrow \mathcal{O}(10)$

Lingfeng Li

LFU Test with FCCC (Prelim.)

E.g. $R_{J/\psi}$ measurement with $\tau \rightarrow \mu \nu \bar{\nu}, \ J/\psi \rightarrow \mu \mu$

Improved reconstruction quality, also expecting lower combinatoric bkg and mis-ID.

$R_{J/\psi}$ Measurement at Tera-Z (II) (Prelim.)

Cut flow and expected yields targeting $B_c^+ \rightarrow J/\psi \tau \nu_{\tau}$ mode at Tera-Z:

Preliminary!	$\# \text{ of } B_c^+ \text{ at Tera-}Z$	$\epsilon_{3\mu}$	ϵ_{pre}	ϵ_{BDT}	Tera- Z yield
$B_c^+ \rightarrow J/\psi \tau \nu_{\tau}$	$\sim 2.2 \times 10^8$	5.5×10^{-5}	0.34	6.6×10^{-1}	$\sim 2.7 \times 10^3$
$B_c^+ \rightarrow J/\psi \mu \nu_\mu$	$\sim 2.2 \times 10^8$	1.3×10^{-3}	0.35	2.7×10^{-3}	$\sim 2.7 \times 10^2$
$B_c^+ \to \chi_c(1P) l^+ \nu_l$	$\sim 2.2 \times 10^8$	_	_	$2.1 imes 10^{-2}$	$\sim 8.1 \times 10^1$
$J/\psi + \mu$ comb. bkg.	_	_	0.069	$1.6 imes 10^{-2}$	$\sim 1.4 \times 10^3$
Mis-ID bkg.	_	_	_	6.3×10^{-3}	$\sim \epsilon_{\mu\pi} \times 6.0 \times 10^3$
Fake- J/ψ bkg.	-	_	_	_	$< r_h \times 9.6 \times 10^0$

The expected precision is $\mathcal{O}(30)$ better, limited by the signal size. Better result with luminosity⁺ and using e instead of μ !

Further LFU Tests with FCCC (Prelim).

$$R_{D_s}$$
 and $R_{D_s^*}$:

$$R_{D_{s}^{(*)}} \equiv \frac{\mathsf{BR}(B_{s} \to D_{s}^{(*)-} \tau \nu)}{\mathsf{BR}(B_{s} \to D_{s}^{(*)-} \ell \nu)} \ . \tag{1}$$

The key is to separate D_s and D_s^* . Challenging as $BR(D_s^{*-} \rightarrow D_s^{-} + \text{soft } \gamma) \simeq 94\%$.

$$R_{\Lambda_c}$$
:

1

$$R_{\Lambda_c} \equiv \frac{\mathsf{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathsf{BR}(\Lambda_b \to \Lambda_c \ell \nu)} \ . \tag{2}$$

using the $\Lambda_c \to p K \pi$ decay, clean vertex w/ low bkg.

Uncertainty $\lesssim \mathcal{O}(10^{-2})$ for all channels with S/B $\gtrsim \mathcal{O}(1)$.

Lingfeng Li

LFUV @ the Z Pole

Rare FCNC Decays: $B_s \rightarrow \phi \nu \nu$ (Prelim.)

 $b \to s \nu \nu$ transitions also important for LFU tests. Related with $b \to c \tau(\ell) \nu$ and $b \to s \tau \tau(\ell \ell)$ via gauge invariance.

	Experimental	SM Prediction			
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 imes 10^{-5}$	$(2.17 \pm 0.30) \times 10^{-6}$			
$BR(B^0 \rightarrow K^{*0} \nu \bar{\nu})$	$< 1.8 \times 10^{-5}$	$(9.48 \pm 1.10) \times 10^{-6}$			
$BR(B^{\pm} \rightarrow K^{\pm} \nu \bar{\nu})$	$< 1.6 \times 10^{-5}$	$(4.68 \pm 0.64) \times 10^{-6}$			
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 \times 10^{-5}$	$(10.22 \pm 1.19) \times 10^{-6}$			
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$(9.93 \pm 0.72) \times 10^{-6}$			

[Tanabashi et al., 2018, Straub, 2015, Geng and Liu, 2003]

Current limit of this channel still led by LEP: (limited production at B factories, \vec{p} not achievable at hadron colliders). Full detector simulation predicts an $\mathcal{O}(10^{-2})$ precision.

Summary

- Flavor physics is related to BSM, SM precision tests, pQCD, lattice, ... everything! Tera-Z is the bridge.
- ▶ Flavor studies at the Z pole benefit from:
 - Large luminosity (from accelerator physics)
 - 2 Clean environment and moderate energy (from m_Z)
 - Good or even revolutionary detectors (from detector R&D)
- The potential discovery of $b \rightarrow s\tau\tau$ is unique at Z-factories.
- Other related FCCC/FCNC tests are promising.
- ▶ New collider/detector at the precision era: new challenges!
 - LFUV, LFV, LNV, BNV...
 - ② CKM and CPV measurements...
 - **③** Precision (τ) physics...
 - Exotics, spectroscopy, double heavy flavor...

Aaij, R. et al. (2015).

Angular analysis and differential branching fraction of the decay $B^0_s\to\phi\mu^+\mu^-.$ JHEP, 09:179.

- Aaij, R. et al. (2020). Test of lepton universality with $\Lambda_b^0 \rightarrow pK^-\ell^+\ell^-$ decays. JHEP, 05:040.
- Aaij, R. et al. (2021).
 Test of lepton universality in beauty-quark decays.
- Altmannshofer, W. et al. (2018). The Belle II Physics Book.
- Capdevila, B., Crivellin, A., Descotes-Genon, S., Hofer, L., and Matias, J. (2018). Searching for New Physics with $b \rightarrow s\tau^+\tau^-$ processes. *Phys. Rev. Lett.*, 120(18):181802.

- Geng, C. and Liu, C. (2003). Study of $B_s \rightarrow (\eta, \eta', \phi) \ell \bar{\ell}$ decays. J. Phys. G, 29:1103–1118.
- Li, L. and Liu, T. (2020). $b \rightarrow s\tau^+\tau^-$ Physics at Future Z Factories.
- Straub, D. M. (2015). $b \rightarrow k^{(*)} \nu \bar{\nu}$ sm predictions.
- Tanabashi, M. et al. (2018).
 Review of Particle Physics.
 Phys. Rev., D98(3):030001.