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Physically compelling reasons for 4-fermion operator

® Theoretical inconsistency (NoGo theorem, H.B. Nielsen and M. Ninomiya NPB (1981), NPB (1981), PLB (1981) ) Of SM
bilinear Lagrangian @()d) in fermion fields in a ultraviolet (UV) cutoff field theory
— Effective 4-fermion operator of Nambu-Jona-Lasinio (NJL) type —G(v¢;¥r)(¥r¥r)

(G.Preparata and S.-S. Xue PLB (1991), S.-S. Xue PLB (1996) , NPB (1997), NPB (2000))

e The effective coupling G has two fixed points:

(i) In the weak-coupling infrared (IR) fixed point @ the electroweak scale
e it gives rise to SM physics with tightly composite Higgs particle via the NJL mechanism
e it offers possible solution to the hierarchy pattern of fermion masses
(Nambu-Jona-Lasinio PR (1961), PR(1961), W. A. Bardeen, C. T. Hill and M. Lindner PRD (1990), S.-S. Xue. PLB (2013), PLB (2014))

(ii) In the strong-coupling ultraviolet (UV) fixed point @ at the composite scale A ~ O (TeV)
e composite fermions (bosons) form as bound states of three (two) SM elementary

fermions and they couple to their constituents via effective contact interactions

— Today we focus on LHC phenomenology of such composite fermions
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Effective field theory of massive composite particles at TeV

Composﬂe fermlons and bosons can be
o Fl ~ (¢ ¥!) - bound states of three SM fermions
® 11/ ~ (7 ) : bound states of two SM fermions

The effective coupling between the F (1) and its constituents is given by the following contact
interaction, WhICh describes composite particle production and decay
® (9. /0! (PIYL)F] + hc.
N= comp03|te scale = O(TeV), g, 2=411 and 41//\? = geometric cross section in the order of

mag nltude ?f inelastic processes forming composite fermions
o (Fu/A)?($, 40 + h.c.
(Fn/A) Yukawa coupling between composite bosons and two fermionic constituents

Aand F_ are free parameters of the models

Operator Composite fermion Fr ~ Composite fermion F;  Composite boson II
(PzeR)(d;MLa) EO ~ eR(d“uLa) Fg ~ EL(ujgdLa) I+ ~ (d;éI/tLa)
(eLvg) (ugdra) N: ~ v (i%dra) ZYZI ~ Uf (digura) H— ~ (1%dpa)
(ELeR)(d;édLa) ER ~ eR(d“dLa) EEL ~ EL(dzdRa) 8 (dadLa)
(Tfvg) (Uura) Ny ~ v&(ibur,) NY ~ D¢ (i upa) IT, ~ (ufura)

E. Eichten, J. Preskill. NPB268 (1986) 179, M. Creutz, C. Rebbi, M. Tytgat, S.-S. Xue, PLB (1997), S.-S. Xue PRD (2016), JHEP 11(2016)072, JHEP (201%)



https://www.sciencedirect.com/science/article/pii/S0370269397004632
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.025004
https://link.springer.com/article/10.1007/JHEP11(2016)072
https://link.springer.com/article/10.1007/JHEP05(2017)146

Comparison w/ other composite fermions models
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Analogies
e the existence of composite fermions
e the existence of contact interaction, in addition to SM gauge interaction, as an effective
approach for describing the effects of the unknown internal dynamics of compositeness
Differences
e composite fermions formed as bound states of SM fermions,
not other fundamental particles (preons)
e strong four-fermion interactions of SM fermions at high energies with different contact
interacting processes
— Different phenomenology with a wide range of composite particles that would manifest via
peculiar signatures (some of which not yet investigated @ LHC)



Phenomenology of composite particles at the TeV scale
e The Feynman diagram representations for the composite fermions F and boson (I1) are
/v

q

Il F

q

I1

e Today, we describe the phenomenology at the LHC considering the most left diagram

e By a crossing symmetry applied to the fermion line f — fT (dashed line) the same diagram
describes a 2 — 2 production process:

qq — F
f is a SM fermion

F is a composite fermion, whose flavour correspond to the SM flavour of f



Production cross-section for the process PP — fF
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Good agreement between analytical+numerical calculation and the results of the CalcHEP simulation, which
validates the model implementation



Decay of the composite fermion F and decay chainPP — fF

Decay of the composite fermion F through 2 different channels
e F—fqqd

= oy Note that
o =gl o fII=II" or II= —, only IT — ¢4’ is allow
Full decay chain is o ifII=1I°IT - GG’ (G = ~,Z, W) is also possible. This case turns out to be
® pp — fF — ffqq' negligible (see below)

o Pp — fF — ff II®*

For a given A, the effective theory of composite particles is fully characterized in terms of the
coupling F,., and the masses m_and m,

e mp/A <1 (mp/A < 1):insight into the dynamics of composite fermion (boson)
formation

e Fr/myr: mpp and Fyp represent the same dynamics of composite boson formation

e mp/mp < 1:to take into account F as composed by a composite boson and an
elementary SM fermion ,



Decay branching fraction of F
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« F — fII — fGG’ always negligible
o II° — GG’ is the only case to depend from mr /A < 1, which means the decay of
F is fully characterized by the 2 parameters Fr;/m and my /mp < 1

* the Br(F — fgq direct) and Br(F — fII — fgq indirect) tend to swap each other for
different values of Fr;/my; this is important in terms of the signal topology, as it
determines whether an intermediate resonance is produced



Relevant channels for the process pp — fF at the LHC
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15 [~0.2,~1] fF — f(jiH) — f(ji(qq')) F,1I Resolved w/ II — qq’ identification of II and F'
<0.2 fF = f(fII) = f(f(qqd")) F, 11 Boosted identification of F;

IT large-radius jet:
2-prong, no V boson tag

<08 [0,1]

fF = f(fad)

Fully resolved same of Fri/mm = 10

Same consideration applies to values of F;/my; between 0.8 and 15
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Relevant signatures for investigating the process PP — fF at LHC

f = SM fermion; F = composite fermion, whose flavour correspond to the SM flavour of f
F particles not necessarily mass degenerate — each flavour searched for separately

f F Topology Final state LHC searches Features not exploited in LHC searches
e E Fully resolved e*(eTqq') [28, 48] E identification
Resolved w/ I = q¢'  e*(eT(qq)) [48, 52] E, 1I identification
Boosted etetJ [28] 2-prong, no V boson tag, boosted II decay
v M Fully resolved wH(nFqq) [28, 48] M identification
Resolved w/ I — q¢'  p*(u¥(qq')) [48, 52] M, 11 identification
Boosted uEptJ [28] 2-prong, no V boson tag, boosted II decay
T T Fully resolved (r%qq") [49] T identification
Resolved w/ 11 = q¢'  7%(r7(qq")) [49] T, 11 identification
Boosted ¥ g n/a
v N Fully resolved v(vqq') [50, 51] N identification
Resolved w/ II — q¢’ v(v(qq')) [50, 51] N, I identification
Boosted vvJ [55] 2-prong, no V boson tag, boosted II deacy
j J Fully resolved i(iqq") n/a
Resolved w/ I — q¢’ 7(i(eq)) n/a
Boosted 3iJ n/a
& @ Fully resolved c(cqq") n/a
Resolved w/ IT — q¢’ c(c(qq")) n/a
Boosted ceJ n/a
b B Fully resolved b(bgq") n/a
Resolved w/ II — q¢ b(b(qq")) n/a
Boosted bb.J n/a
¥ ;i Fully resolved t(tqq') n/a
Resolved w/ IT — qq’ t(t(qq")) n/a
Boosted ttJ n/a

e 8 different final states times 3 possible topologies = 24 distinct signatures

e F quark flavors appear to be completely unexplored

e For F = N, the v pair stands for the pairs of the SM left-handed neutrino v and/or
sterile right-handed neutrino v, as the latter is a candidate of dark-matter particles
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Constraint of the model forF =E

Recast of the CMS search (link) that probed the final state eeqq (2.3 fb™',Vs= 13 TeV)
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Sensitivity for F = E at High-Lumi LHC (3 ab™)
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Wide region of the model phase space where the existence of the composite fermions
can be investigated (even with a simple analysis)
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Summary and conclusion

e New composite states from 4-fermion operator of NJL are well motivated from a theoretical point of
view (see e.g. s-s. xue JHEP (2016), S.-S. Xue JHEP (2017) and references therein)
o Weak coupling regime: 4-fermion NJL operators w/ IR-fixed point that renders the elegant Higgs
mechanism at low energies
o Strong coupling regime: 4-fermion NJL operators w/ UV-fixed point that would render F (II) as
bound states of three (two) SM elementary leptons or quarks, and a contact interactions at
energies O(TeV)
e \We have studied the cross-sections, branching ratios, and topologies with which the F particles can
manifest. We find out that
o for given Vs and A values, they can be investigated comprehensively relying on only two
parameters: F_/m_and m_/m_
o 8 different final states times 3 possible topologies = 24 distinct signatures
o F quark flavors appear to be completely unexplored
o Even signatures already explored have a wide potential of discovery with the increasing
statistics accumulated at the LHC
o For F =N there is a possible candidate of dark-matter particle
e Given the broad variety of new composite particles that could manifest in non-previously examined
signatures at the LHC, we would like to encourage their investigations at future searches at the LHC
e There is an ongoing effort to outline the phenomenology for the direct production
of composite boson
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Back up
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4-fermion operators and IR UV-fixed points

For the reason (No-Go theorem) that the SM bilinear Lagrangian 1O
in fermion fields is inconsistent in a UV cutoff field theory, effective
four-fermion operators of Nambu-Jona-Lasinio type / /
must be originated by some unknown dynamics at the cutoff A.

B(G) P
/// \\\
,
very weak coupling parity violaticy/ parity conservation
R|SM uv |
— G(u)
G.(240GeV) Gerit(TeV)
| massive bound states
strong-coupling
symmetric phase SSB symmetry breaking phase symmetric phase

e No-Go theorem: H.B. Nielsen and M. Ninomiya, Nucl. Phys. B 185 (1981) 20 and B 193 (1981) 1783;
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