Phenomenology at the LHC of composite particles from strongly interacting Standard Model fermions via four-fermion operator of Nambu-Jona-Lasinio (NJL) type

Pheno 2021 - 24-26 May

Eur. Phys. J. C 80 (2020) 309

R. Leonardi and O. Panella (INFN, Sezione di Perugia, Italy) F. Romeo and A. Gurrola (Vanderbilt University, Nashville, TN, USA) H. Sun (孙昊) (Dalian University of Technology, China) She-Sheng Xue (薛社生) (ICRANet, Pescara, and Sapienza University of Rome, Italy)

Physically compelling reasons for 4-fermion operator

Theoretical inconsistency (NoGo theorem, H. B. Nielsen and M. Ninomiya NPB (1981), NPB (1981), PLB (1981) of SM bilinear Lagrangian $\overline{\psi}\hat{O}\psi$ in fermion fields in a ultraviolet (UV) cutoff field theory

Effective 4-fermion operator of Nambu-Jona-Lasinio (NJL) type $-G(\overline{\psi}_L\psi_R)(\overline{\psi}_R\psi_L)$ (G. Preparata and S.-S. Xue PLB (1991), S.-S. Xue PLB (1996), NPB (1997), NPB (2000))

- The effective coupling G has two fixed points:
 - (i) In the weak-coupling infrared (IR) fixed point @ the electroweak scale
 - it gives rise to SM physics with tightly composite Higgs particle via the NJL mechanism
 - it offers possible solution to the hierarchy pattern of fermion masses

(Nambu-Jona-Lasinio PR (1961), PR(1961), W. A. Bardeen. C. T. Hill and M. Lindner PRD (1990), S.-S. Xue. PLB (2013), PLB (2014)

- (ii) In the strong-coupling ultraviolet (UV) fixed point @ at the composite scale $\Lambda \sim O$ (TeV)
 - composite fermions (bosons) form as bound states of three (two) SM elementary fermions and they couple to their constituents via effective contact interactions
- → Today we focus on LHC phenomenology of such composite fermions

Effective field theory of massive composite particles at TeV

Composite fermions and bosons can be

- ullet $F_R^f \sim \psi_{\scriptscriptstyle R}^f (ar{\psi}_{\scriptscriptstyle R}^f \psi_{\scriptscriptstyle L}^f)$: bound states of three SM fermions
- ullet $\Pi^f \sim (ar{\psi}_{_L}^f \psi_{_L}^f)$: bound states of *two SM fermions*

The effective coupling between the F (Π) and its constituents is given by the following contact interaction, which describes composite particle production and decay

- $(g_*/\Lambda)^2 \bar{\psi}_L^f (\bar{\psi}_L^f \psi_R^f) F_R^f + \text{h. c.}$ Λ = composite scale = O(TeV), $g_*^2 = 4\pi$ and $4\pi/\Lambda^2$ = geometric cross section in the order of magnitude of inelastic processes forming composite fermions
- $ullet \ (F_\Pi/\Lambda)^2 (ar\psi_{_L}^f \psi_{_R}^f) \Pi^f + \mathrm{h.\,c.}$

 $(F_{\Pi}/\Lambda)^2$ Yukawa coupling between composite bosons and two fermionic constituents

Λ and F_{π} are free parameters of the models

Operator	Composite fermion F_R	Composite fermion \bar{F}_L	Composite boson Π	
$(\bar{\nu}_L^e e_R)(\bar{d}_R^a u_{La})$	$E_R^0 \sim e_R(\bar{d}_R^a u_{La})$	$ar{E}_L^0 \sim ar{e}_L(ar{u}_R^a d_{La})$	$\Pi^+ \sim (\bar{d}_R^a u_{La})$	
$(\bar{e}_L \nu_R^e)(\bar{u}_R^a d_{La})$	$N_R^- \sim u_R^e (ar u_R^a d_{La})$	$ar{N}_L^+ \sim ar{ u}_L^e (ar{d}_R^a u_{La})$	$\Pi^- \sim (\bar{u}_R^a d_{La})$	
$(\overline{e}_L e_R)(\overline{d}_R^a d_{La})$	$E_R^- \sim e_R(ar{d}_R^a d_{La})$	$ar{E}_L^+ \sim ar{e}_L(ar{d}_L^a d_{Ra})$	$\Pi_d^0 \sim (\bar{d}_R^a d_{La})$	
$(\bar{\nu}_L^e \nu_R^e)(\bar{u}_R^a u_{La})$	$N_R^0 \sim u_R^e (ar{u}_R^a u_{La})$	$ar{N_L^0} \sim ar{ u}_L^e (ar{u}_L^{\overline{a}} u_{Ra})$	$\Pi_u^0 \sim (ar{u}_R^{a} u_{La})$	

E. Eichten, J. Preskill, NPB268 (1986) 179, M. Creutz, C. Rebbi, M. Tytgat, S.-S. Xue, PLB (1997), S.-S. Xue PRD (2016), JHEP 11(2016)072, JHEP (2017)

Comparison w/ other composite fermions models

Searches for composite fermions @ LHC rely on models such as

J.C. Pati, A. Salam, J.A. Strathdee, Are quarks composite?, Phys. Lett. B 59 (1975) https://doi.org/10.1016/0370-2693(75)90042-8; Composite models Harari, quarks leptons, Phys. Rep. 104 (1984)and 159,https://doi.org/10.1016/0370-1573(84)90207-2; O.W. Greenberg, C.A. Nelson, Composite models of leptons, Phys. Rev. D 10 (1974) 2567,https://doi.org/10.1103/PhysRevD.10.2567. P. A. M. Dirac, Scientific American 208, 45 (1963). H. Terazawa, K. Akama, and Y. Chikashige, Phys. Rev. D15, 480 (1977). H. Terazawa, Phys.Rev. D22, 184 (1980).

E. Eichten and K. Lane, Physics Letters B 90, 125 (1980). E. Eichten, K. D. Lane, and M. E. Peskin, Phys. Rev. Lett. 50, 811 (1983).

Lett. 50, 811 (1983). H. Terazawa, in Europhysics Topical Conference: Flavor

Mixing in Weak Interactions Erice, Italy, March 4-12, 1984 (1984).

N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. B139, 459 (1984).

U. Baur, M. Spira, and P. M. Zerwas, Phys. Rev. D 42, 815 (1990).

U. Baur, I. Hinchliffe, and D. Zeppenfeld, Int. J. Mod. Phys. A2, 1285 (1987).

Analogies

- the existence of composite fermions
- the existence of contact interaction, in addition to SM gauge interaction, as an effective approach for describing the effects of the unknown internal dynamics of compositeness

Differences

- composite fermions formed as bound states of SM fermions, not other fundamental particles (preons)
- strong four-fermion interactions of SM fermions at high energies with different contact interacting processes
- → Different phenomenology with a wide range of composite particles that would manifest via peculiar signatures (some of which not yet investigated @ LHC)

Phenomenology of composite particles at the TeV scale

The Feynman diagram representations for the composite fermions F and boson (Π) are

- Today, we describe the phenomenology at the LHC considering the most left diagram
- By a crossing symmetry applied to the fermion line $f \to f^\dagger$ (dashed line) the same diagram describes a $2 \to 2$ production process:

$$qar q\, o fF$$

f is a SM fermion

F is a composite fermion, whose flavour correspond to the SM flavour of f

Production cross-section for the process pp o fF

Good agreement between analytical+numerical calculation and the results of the CalcHEP simulation, which validates the model implementation

Decay of the composite fermion F and decay chain pp o fF

Decay of the composite fermion F through 2 different channels

- $F \to \overline{f} qq'$
- $F \rightarrow \bar{f} \Pi^{0,\pm}$

Full decay chain is

- pp $\rightarrow fF \rightarrow f\bar{f}qq'$
- pp $\rightarrow fF \rightarrow f\bar{f} \Pi^{0,\pm}$

Note that

- if $\Pi = \Pi^+$ or $\Pi^- \to$, only $\Pi \to qq'$ is allow
- if $\Pi = \Pi^0$, $\Pi \to \tilde{G}\tilde{G}'$ ($G = \gamma, Z, W$) is also possible. This case turns out to be negligible (see below)

For a given Λ , the effective theory of composite particles is fully characterized in terms of the coupling F_{π} , and the masses m_F and m_{π}

- $m_F/\Lambda < 1~(m_\Pi/\Lambda < 1)$: insight into the dynamics of composite fermion (boson) formation
- F_{Π}/m_{Π} : m_{Π} and F_{Π} represent the same dynamics of composite boson formation
- $m_{\Pi}/m_F < 1$: to take into account F as composed by a composite boson and an elementary SM fermion

Decay branching fraction of F

- $F \rightarrow f\Pi \rightarrow fGG'$ always negligible
- $\Pi^0 \to \tilde{G}\tilde{G}'$ is the only case to depend from $m_F/\Lambda < 1$, which means the decay of F is fully characterized by the 2 parameters F_Π/m_Π and $m_\Pi/m_F < 1$
- the Br($F \to fq\bar{q}$ direct) and Br($F \to f\Pi \to fq\bar{q}$ indirect) tend to swap each other for different values of F_Π/m_Π this is important in terms of the signal topology, as it determines whether an intermediate resonance is produced

Relevant channels for the process pp o fF at the LHC

F_Π/m_Π	m_Π/m_F	Channel	Resonances	Topology	Experimental features
15	$[\sim 0.2, \sim 1]$	$fF \to f(\bar{f}\Pi) \to f(\bar{f}(qq'))$	F,Π	Resolved w/ $\Pi \rightarrow qq'$	identification of Π and F
	≤ 0.2	$fF \to f(\bar{f}\Pi) \to f(\bar{f}(qq'))$	$F,~\Pi$	Boosted	identification of F ;
					Π large-radius jet:
					2-prong, no V boson tag
≤ 0.8	[0,1]	$fF \to f(\bar{f}qq')$	F	Fully resolved	same of $F_{\Pi}/m_{\Pi} = 10$

Same consideration applies to values of F_{Π}/m_{Π} between 0.8 and 15

Relevant signatures for investigating the process $\;pp ightarrow fF\;$ at LHC

f = SM fermion; F = composite fermion, whose flavour correspond to the SM flavour of f particles not necessarily mass degenerate \rightarrow each flavour searched for separately

f	\overline{F}	Topology	Final state	LHC searches	Features not exploited in LHC searches
e	E	Fully resolved	$e^{\pm}(e^{\mp}qq')$	[28, 48]	E identification
		Resolved w/ $\Pi \rightarrow qq'$	$e^{\pm}(e^{\mp}(qq'))$	[48, 52]	E,Π identification
		Boosted	$e^\pm e^\mp J$	[28]	2-prong, no V boson tag, boosted Π decay
μ	M	Fully resolved	$\mu^{\pm}(\mu^{\mp}qq')$	[28, 48]	M identification
		Resolved w/ $\Pi \rightarrow qq'$	$\mu^{\pm}(\mu^{\mp}(qq'))$	[48, 52]	M,Π identification
		Boosted	$\mu^{\pm}\mu^{\mp}J$	[28]	2-prong, no V boson tag, boosted Π decay
τ	\mathcal{T}	Fully resolved	$ au^\pm(au^\mp qq')$	[49]	\mathcal{T} identification
		Resolved w/ $\Pi \rightarrow qq'$	$\tau^{\pm}(\tau^{\mp}(qq'))$	[49]	\mathcal{T},Π identification
		Boosted	$ au^\pm au^\mp J$	n/a	
ν	N	Fully resolved	$\nu(\nu qq')$	[50, 51]	N identification
		Resolved w/ $\Pi \rightarrow qq'$	u(u(qq'))	[50, 51]	N, Π identification
		Boosted	$ u \nu J$	[55]	2-prong, no V boson tag, boosted Π deacy
j	J	Fully resolved	j(jqq')	n/a	
		Resolved w/ $\Pi \rightarrow qq'$	j(j(qq'))	n/a	
		Boosted	jjJ	n/a	
c	C	Fully resolved	c(cqq')	n/a	
		Resolved w/ $\Pi \rightarrow qq'$	c(c(qq'))	n/a	
		Boosted	ccJ	n/a	
b	B	Fully resolved	b(bqq')	n/a	
		Resolved w/ $\Pi \rightarrow qq'$	b(b(qq'))	n/a	
		Boosted	bbJ	n/a	
t	T	Fully resolved	$t(\bar{t}qq')$	n/a	
		Resolved w/ $\Pi \rightarrow qq'$	$t(\bar{t}(qq'))$	n/a	
		Boosted	$tar{t}J$	n/a	

- 8 different final states times 3 possible topologies = 24 distinct signatures
- F quark flavors appear to be completely unexplored
- For F = N, the ν pair stands for the pairs of the SM left-handed neutrino ν_L^e and/or sterile right-handed neutrino ν_R^e , as the latter is a candidate of dark-matter particles

Constraint of the model for F = E

Recast of the CMS search (link) that probed the final state eeqq (2.3 fb⁻¹, \sqrt{s} = 13 TeV)

Sensitivity for F = E at High-Lumi LHC (3 ab⁻¹)

pT e1 (e2) [j1]
$$\geq$$
 180 (80) [210] GeV; $m_{ee} \geq$ 300 GeV $N_s = L\sigma_s\epsilon_s, \quad N_b = L\sigma_b\epsilon_b, \quad S = \frac{N_s}{\sqrt{N_b}}$

Wide region of the model phase space where the existence of the composite fermions can be investigated (even with a simple analysis)

Summary and conclusion

- New composite states from 4-fermion operator of NJL are well motivated from a theoretical point of view (see e.g. S.-S. Xue JHEP (2016), S.-S. Xue JHEP (2017) and references therein)
 - Weak coupling regime: 4-fermion NJL operators w/ IR-fixed point that renders the elegant Higgs mechanism at low energies
 - \circ Strong coupling regime: 4-fermion NJL operators w/ UV-fixed point that would render F (Π) as bound states of three (two) SM elementary leptons or quarks, and a contact interactions at energies O(TeV)
- We have studied the cross-sections, branching ratios, and topologies with which the F particles can manifest. We find out that
 - o for given \sqrt{s} and Λ values, they can be investigated comprehensively relying on only two parameters: F_{Π}/m_{Π} and m_{Π}/m_{E}
 - 8 different final states times 3 possible topologies = 24 distinct signatures
 - F quark flavors appear to be completely unexplored
 - Even signatures already explored have a wide potential of discovery with the increasing statistics accumulated at the LHC
 - For F = N there is a possible candidate of dark-matter particle
- Given the broad variety of new composite particles that could manifest in non-previously examined signatures at the LHC, we would like to encourage their investigations at future searches at the LHC
- There is an ongoing effort to outline the phenomenology for the direct production of composite boson

Back up

4-fermion operators and IR UV-fixed points

For the reason (No-Go theorem) that the SM bilinear Lagrangian $\psi O \psi$ in fermion fields is inconsistent in a UV cutoff field theory, effective four-fermion operators of Nambu-Jona-Lasinio type $-G(\bar{\psi}_L \psi_R)(\bar{\psi}_R \psi_L)$ must be originated by some unknown dynamics at the cutoff Λ .

- No-Go theorem: H.B. Nielsen and M. Ninomiya, Nucl. Phys. B 185 (1981) 20 and B 193 (1981) 173;
- G. Preparata and S.-S. Xue, PLB264(1991)35; S.-S. Xue, PLB381(1996)277; NPB486 (1997) 282, B580 (2000)