# Resonant Leptogenesis and Collider Signals from Discrete Flavor and CP Symmetries

#### Gary Chauhan

Washington University in St. Louis, USA

Phenomenology Symposium 2021 May 25, 2021

Work based on GC and Bhupal Dev, arXiv:2106.abcde





#### Leptogenesis

[Fukugita, Yanagida (Phys. Lett. B '86)]

- Central idea: Leptonic asymmetry in early Universe is converted to baryonic asymmetry through B-L conserving EW sphaleron interactions.
- Add SM-singlet heavy Majorana neutrinos.

$$\mathcal{L}_l = Y_l \bar{L}_l H l_R + Y_D \bar{L}_l \tilde{H} N + \frac{1}{2} \bar{N}^c M_R N + h.c.$$

- Satisfies all 3 Sakharov conditions.
  - CP violation in the leptonic sector (through complex  $Y_D$  and/or  $U_{PMNS}$  phases)
  - L violation due to the Majorana nature of the heavy RH neutrinos
  - Departure from thermal equilibrium when  $\Gamma_N \leq H$
- It can connect neutrino mass mechanism and matter-antimatter asymmetry.

## **CP** Asymmetry



#### Resonant Leptogenesis

- TeV scale leptogenesis, no dependence on initial conditions.
- If  $\Delta m_N \sim \Gamma_N \ll m_N$ , the self energy contribution ( $\varepsilon$ -type) to the CP asymmetry becomes dominant and large (even order 1).
- The  $\varepsilon$ -type CP asymmetry,

$$\varepsilon_{N_i} = \frac{\text{Im}(h^{\nu\dagger}h^{\nu})_{ij}^2}{(h^{\nu\dagger}h^{\nu})_{ii}(h^{\nu\dagger}h^{\nu})_{jj}} \frac{(M_{N_i}^2 - M_{N_j}^2) M_{N_i} \Gamma_{N_j}}{(M_{N_i}^2 - M_{N_j}^2)^2 + M_{N_i}^2 \Gamma_{N_j}^2}$$

ullet Order 1 CP aymmetries are possible when, [Pilaftsis '97; Pilaftsis, Underwood '03]

$$M_{N_2} - M_{N_1} \sim \frac{1}{2} \Gamma_{N_{1,2}}$$

$$\frac{\mathrm{Im}(h^{\nu\dagger}h^{\nu})_{ij}^2}{(h^{\nu\dagger}h^{\nu})_{ii}(h^{\nu\dagger}h^{\nu})_{jj}}\sim 1$$

ullet This helps lower the heavy neutrino scale  $M_N$ , which can be as low as EW scale. [Pilaftsis, Underwood '05; Deppisch, Pilaftsis '10; Dev, Millington, Pilaftsis, Teresi '14]

#### Residual Flavor and CP Symmetries

- High energy neutrino parameters are free parameters in the leptogenesis mechanism.
- We will look at the idea of residual flavor and CP symmetries that determine lepton mixing angles, low- and high energy CP phases with only one free parameter.
- ullet We conjecture the existence of a finite, discrete flavor symmetry  $G_f$  at a high-energy scale
- At low energies,  $G_f$  is broken to  $G_l$  in the charged lepton sector and to  $G_{\nu}$  in the neutrino sector.
- ullet  $G_l$  determines  $U_l$  and  $G_{
  u}$  determines  $U_{
  u}$ . This leads to the PMNS matrix

$$U_{PMNS} = U_l^{\dagger} U_{\nu}$$

#### Residual Flavor and CP Symmetries

- For  $G_f$ , we use a group of the form  $\Delta(6n^2)$  with n even ,  $3 \nmid n$  and  $4 \nmid n$ ..
- Residual symmetries :  $G_l = Z_3$ ,  $G_{\nu} = Z_2 \times CP$
- given X (CP transformation) and Z (generator of  $Z_2$  in 3)

$$Z^{\dagger}(\mathbf{3})\,Y_D\,Z(\mathbf{3}') = Y_D \quad \text{and} \quad X^{\star}(\mathbf{3})\,Y_D\,X(\mathbf{3}') = Y_D^{\star} \;.$$

Consistency condition 
$$:X(\mathbf{r}) Z(\mathbf{r}) = Z(\mathbf{r})^{\star} X(\mathbf{r})$$

ullet Changing to a different basis by the unitary matrix  $\Omega$  that fulfills

$$\Omega^{\dagger} Z \Omega = \operatorname{diag}((-1)^{z_1}, (-1)^{z_2}, (-1)^{z_3}) \ z_i = 0, 1$$

it follows then  $X = \Omega \Omega^T$  and  $\Omega^T Y_D \Omega$  real.

# Our chosen case : $\Delta(6n^2)$

•  $\Omega^T Y_D \Omega$  can be diagonalized by two rotation matrices from the left and right, respectively

$$\Omega(s)(\mathbf{3})^{\dagger} Y_D \Omega(s)(\mathbf{3}') = R_{ij}(\theta_L) \begin{pmatrix} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_3 \end{pmatrix} R_{kl}(-\theta_R).$$

- $U_{\text{PMNS}} = \Omega(\mathbf{3}) R_{ij}(\theta_L) K_{\nu}, \qquad K_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & i^{k_1} & 0 \\ 0 & 0 & i^{k_2} \end{pmatrix} k_i = 0, 1, 2, 3$
- ullet The light neutrino mass matrix  $m_
  u$  follows from the type-I seesaw mechanism

$$m_{\nu} = m_D \, M_R^{-1} \, m_D^T \, .$$

# Our chosen case : $\Delta(6n^2)$

$$\mathbf{m}_{\nu}: \left\{ \begin{array}{cccc} y_1^2 \cos 2\theta_R & 0 & y_1 y_3 \sin 2\theta_R \\ 0 & y_2^2 & 0 \\ y_1 y_3 \sin 2\theta_R & 0 & -y_3^2 \cos 2\theta_R \\ \end{array} \right. & \mathbf{s} \text{ even} \\ \left\{ \begin{array}{cccc} \frac{1}{M_N} \left( & 0 & y_2^2 & 0 \\ & 0 & y_2^2 & 0 \\ & 0 & y_2^2 & 0 \\ & -y_1 y_3 \sin 2\theta_R & 0 & y_3^2 \cos 2\theta_R \end{array} \right) \mathbf{s} \text{ odd} \right. \end{array} \right.$$

• For  $y_1 = 0$   $(y_3 = 0)$ , we get strong normal (inverted) ordering, with  $m_{\text{lightest}} = 0$ .

$$\begin{aligned} \text{NO}: \qquad y_1 = 0, \quad y_2 = \pm \frac{\sqrt{M_N \sqrt{\Delta m_{\text{sol}}^2}}}{v}, \quad y_3 = \pm \frac{\sqrt{M_N \frac{\sqrt{\Delta m_{\text{atm}}^2}}{|\cos 2\theta_R|}}}{v} \\ \text{IO}: \qquad y_3 = 0, \quad y_2 = \pm \frac{\sqrt{M_N \sqrt{\Delta m_{\text{atm}}^2}}}{v}, \quad y_1 = \pm \frac{\sqrt{M_N \frac{\sqrt{|\Delta m_{\text{atm}}^2| - \Delta m_{\text{sol}}^2}}{|\cos 2\theta_R|}}}{v} \end{aligned}$$

ullet Only free parameters :  $M_N$  and  $heta_R$ 

## Collider Signal

 $\bullet$  In our scenario,  $y_i \lesssim 10^{-6}$  supresses the Drell Yan production

$$pp \to W^{(*)} \to N_i l_\alpha$$

- We need to go beyond the minimal type-I seesaw to realize a sizable LNV signal.
- This scenario can also be embedded in SM with extended gauge symmetry
- We consider minimal  $U(1)_{B-L}$  extension for enhanced production of  $N_i$  at colliders.



# Collider Signal - Branching Ratio



## Collider Signal

For 
$$M_{Z^\prime}=4$$
 TeV and  $s=2$ ,  $n=26$ 



#### **Decay Lengths**

ullet The decay widths  $\Gamma_i$  of the RH neutrinos  $N_i$  are given at the tree level by

$$\Gamma_i \approx \frac{(\hat{Y}_D^{\dagger} \hat{Y}_D)_{ii}}{8 \pi} M_i = \frac{(\hat{m}_D^{\dagger} \hat{m}_D)_{ii}}{8 \pi v^2} M_i$$

The expressions for decay widths of the 3 heavy RH neutrinos :

$$\Gamma_{1} \approx \frac{M}{24\pi} \left( 2y_{1}^{2} \cos^{2}\theta_{R} + y_{2}^{2} + 2y_{3}^{2} \sin^{2}\theta_{R} \right) ,$$

$$\Gamma_{2} \approx \frac{M}{24\pi} \left( y_{1}^{2} \cos^{2}\theta_{R} + 2y_{2}^{2} + y_{3}^{2} \sin^{2}\theta_{R} \right) ,$$

$$\Gamma_{3} \approx \frac{M}{8\pi} \left( y_{1}^{2} \sin^{2}\theta_{R} + y_{3}^{2} \cos^{2}\theta_{R} \right) .$$

- If  $\theta_R \approx \pi/2$ ,  $3\pi/2$  (for strong NO) or  $\theta_R \approx 0$ ,  $\pi$  (for strong IO),  $\Gamma_3$  tends to zero. (termed Enhanced Residual Symmetry points)
- ullet Near points of ERS ,  $N_3$  can have a very long lifetime  $o N_3$  may be detected in long-lived particle searches such as in MATHUSLA detector.

#### **Decay Lengths**



 $\theta_R pprox \pi/2,\, 3\pi/2$  (ERS points)

#### **Decay Lengths**



- At leading order, we have three degenerate RH neutrinos.
- Higher-order corrections can break the residual symmetries :

$$M_1 = M_N (1 + 2 \kappa)$$
 and  $M_2 = M_3 = M_N (1 - \kappa)$ .

ullet CP asymmetries in the decays of  $N_i$  are given by :

$$\epsilon_{i\alpha} \sim \sum_{j} {\rm Im}(\hat{Y}_{D,\alpha i}^* Y_{D,\alpha i}) \; {\rm Re}(\hat{Y}_D^\dagger Y_D)_{ij} \; F_{ij}$$

- ullet  $F_{ij}$  are related to the regulator in ReL and are proportional to the mass splitting of  $N_i$ .
- We find

$$\varepsilon_{1\alpha} \sim \frac{y_2 y_3}{9} (-2y_2^2 + y_3^2 (1 - \cos 2\theta_R)) \sin 3\phi_s \sin 2\theta_R \sin \theta_{L,\alpha} F_{12}$$
 (NO)

$$\varepsilon_{1\alpha} \sim \frac{y_1 y_2}{9} (-2y_2^2 + y_1^2 (1 + \cos 2\theta_R)) \sin 3\phi_s \sin 2\theta_R \sin \theta_{L,\alpha} F_{12}$$
 (IO)

with 
$$\theta_{L,\alpha} = \theta_L + \rho_{\alpha} 4\pi/3$$
 and  $\rho_e = 0, \rho_{\mu} = 1, \rho_{\tau} = -1$ 





For  $g_{B-L}=0.1,~M_{Z'}\gtrsim 4.12~{\rm TeV}$ For  $g_{B-L}=1,~M_{Z'}\gtrsim 7~{\rm TeV}$ 



For  $g_{B-L}=1,\ M_{Z'}\gtrsim 7\ \text{TeV}$ Enhancement from  $g_{B-L}^4\to 10^4$ 

- Neutrinoless double beta  $(0\nu\beta\beta)$  decay is one of the most important theorised LNV process to discern the Majorana nature of the neutrinos.
- The predictions for this yet unobserved process depends explicitly on the Majorana phases  $\alpha$  and  $\beta$ .
- ullet A nuclear isotope decaying through 0
  uetaeta decay would exhibit a half-life  $T_{1/2}^{0
  uetaeta}$  of

$$\Gamma^{0\nu\beta\beta} = \frac{1}{T_{1/2}^{0\nu\beta\beta}} = G^{0\nu} |M^{0\nu}|^2 \frac{m_{ee}}{m_e}$$

$$m_{ee} = \left| U_{\rm PMNS,11}^2 m_1 + U_{\rm PMNS,12}^2 m_2 + U_{\rm PMNS,13}^2 m_3 \right|$$

$$m_{ee} = \left| \cos^2 \theta_{12} \cos^2 \theta_{13} m_1 + \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i\alpha} m_2 + \sin^2 \theta_{13} e^{i\beta} m_3 \right|.$$

ullet In our example case, the light neutrino contribution to 0
uetaeta is restricted to :

$$\mathbf{m}_{\beta\beta}: \frac{1}{3} \left\{ \begin{array}{l} \left| \sqrt{\Delta m_{\rm sol}^2} + 2(-1)^{s+k+1} \sin^2\theta_L e^{6i\phi_s} \sqrt{\Delta m_{\rm atm}^2} \right| & \quad \mbox{(NO)} \\ \left| 1 + 2(-1)^{s+k+1} \cos^2\theta_L e^{6i\phi_s} \right| \sqrt{|\Delta m_{\rm atm}^2|} & \quad \mbox{(IO)} \end{array} \right.$$

#### $0\nu\beta\beta$ results



#### Conclusion

- Leptogenesis is an attractive mechanism to explain the BAU.
- $\bullet$  Resonant Leptogenesis leads to order 1 CP asymmetry and reduces the energy scale of BAU production to TeV scale.
- ullet The high-energy CP violating physics is disconnected from low-energy neutrino data, can be connected through role of residual flavor and CP symmetries.
- We have presented a type-I seesaw scenario with a flavour and CP symmetry as well as three RH neutrinos with almost degenerate masses in the few hundred GeV to TeV range.
- ullet Requiring  $\eta_B$  to be generated via resonant leptogenesis constrains the prospects for detecting RH neutrinos at colliders
- Tight predictions for future neutrinoless double beta decay experiments can fully probe our scenario and thus provide complementary information

Supplementary Material

## Leptogenesis - 3 basic steps

 $\bullet$  Generation of L asymmetry in heavy Majorana neutrino N decay :



ullet Partial washout of the asymmetry due to inverse decay and scatterings with  $\Delta L 
eq 0$ :



ullet Conversion of the leftover L asymmetry to B asymmetry at  $T>T_{sph}$ :



# Our chosen case : $\Delta(6n^2)$

- ullet For  $G_f$ , we use a group of the form  $\Delta(6n^2)$  with n even ,  $3 \nmid n$  and  $4 \nmid n$ ..
- Residual symmetries :  $G_l = Z_3$ ,  $G_{\nu} = Z_2 \times CP$

$$a^3 = e$$
,  $c^n = e$ ,  $d^n = e$ ,  $cd = dc$ ,  $aca^{-1} = c^{-1}d^{-1}$ ,  $ada^{-1} = c$   
 $b^2 = e$ ,  $(ab)^2 = e$ ,  $bcb^{-1} = d^{-1}$ ,  $bdb^{-1} = c^{-1}$ .

- For case in consideration :  $Z=c^{n/2}$  and  $X=a\,b\,c^s\,d^{2s}$  with s=0,1,...,n-1
- ullet As  $M_R$  leaves  $G_f$  and CP invariant, its form is simply

$$M_R = M_N \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \tag{1}$$

#### **Implications**

- Dirac CP phase is trivial  $\delta = 0$ .
- For  $m_{\text{lightest}}=0$ , only one Majorana phase  $\alpha$ , which depends on the chosen CP transformation:

$$\sin \alpha = (-1)^{k+r+s} \sin 6\phi_s$$
 and  $\cos \alpha = (-1)^{k+r+s+1} \cos 6\phi_s$  with  $\phi_s = \frac{\pi s}{n}$ 

where k=0(k=1) for  $\cos 2\theta_R>0(\cos 2\theta_R<0)$  and r=0(r=1) for NO(IO).