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which a model is constructed to describe “normal” training data. The novelty detection
approach is typically used when the quantity of available “abnormal” data is insufficient
to construct explicit models for non-normal classes. Application includes inference in
datasets from critical systems, where the quantity of available normal data is very large,
Keywords: _ such that “normality” may be accurately modelled. In this review we aim to provide an
Novelty detection updated and structured investigation of novelty detection research papers that have
One-class classification di h hi I . li duri he | d d
Machine learning appeared in the machine learning literature during the last decade.
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To detect novel events from the known sample without any prior knowledge.

To detect NP model-independently



Novelty Detection:

o Isolation-based (Ois,). The novelty response for a given testing event is evaluated Autoencoder loss:
according to its isolation from the distribution of the known-pattern data in the
feature space. All of the other testing events are irrelevant in this process. to be determined by DNN trained
on the known background.
Isolation-based:

Autoencoder-based: (arxiv: 1807.10261, 1808.08979, 1808.08992, 1811.10276, 1903.02032
1905.10384, 2005.01598, 2007.01850, 2103.06595, 2105.07988)

The other events in the testing
' sample don’t contribute to it.

Graph: (arxiv: 1912.10625)

o Clustering (density)-based (O,). The novelty response for a given testing event is . Pdata(T)
evaluated according to the clustering around this point on top of the distribution of Neyman—Pearson lemma: Dbg (x)
the known-pattern data in the feature space. The other testing events (especially the
ones nearby) are potentially relevant in this process.

, N-_B
Z-like score: VB

Clustering-based:
KNN-based: (arxiv: 1807.10261, 1807.06038)
t-score (arxiv: 1806.02350, 1912.12155), ANODE (arxiv: 2001.04900), CWOLaA (arxiv: 1805.02664, 1902.02634, 2005.02983),
TNT (arxiv: 2002.12376), SALAD (arxiv: 2001.05001), SULU (arxiv: 2011.00863), UCluster (arxiv: 2010.07106).



) Isolation-based Evaluator: k-Nearest Neighbours

arxiv:1807.10261

1 A dirain — {d};
Oigo = 5 (1 + erf \I/SS), with Ay, = tram, < 1t;;‘n>
cv2 <dtrain>
Novelty evaluator: in the range of [0, 1] Novelty measure: unnormalised range
.. Knolwn, I =l(0, 0),:7=1
B dtrain the mean distance of a testing event

to its k nearest neighbours in the training sample

(dtrain) the mean distance of the training sample:

average over both training sample size and k




Clustering-based Evaluator: k-Nearest Neighbours
arxiv:1807.10261

B 1 Ac:lu . L t_egg B ’;Z%n
Oeclu = 5 (1 + erfc\/i), with Aoy = d;Z?r{z
Novelty evaluator: in the range of [0, 1] Novelty measure: unnormalised range
]-. Knolwn, I =I(0, O),(Ir=1

- Unknown = (1. 00 = 01 : dtrain the mean distance of a testing event
to its k nearest neighbours in the training sample

diest the mean distance of a testing event
: to its k nearest neighbours in the testing sample

=3 _2 T e m the dimension of the feature space

The novelty measure mimics the structure of —N@B



Synergy-based Evaluator
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Construct a DNN and use its output as a synergy-based evaluator.

label: O
Simulated Background .
>
>
S’ Osyn > T
label: 1
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3y Robustness

20 classifiers with different initialisations are trained in every case.
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Comparison with arxiv: 1912.12155
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The median sigpificance, obtained-with a y? approximation of the test statistic, while
Ref. |29] quotek between 5 and 160 for the nearest neighbors approach depending onthe/cut on

¢ can conclude that both approaches are sensitive to the simple

problem at hand.
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Benchmark Studies

the analysis of ttyy with the data of 3 ab=1@13 TeV. We will focus on the di-photon Relational autoencoder is used for

kinematics only for simplicity. The potential signals include (1) the tth Higgs production dimensionality reduction
with a resonance decay h — y7; and (2) stop pair production in gravity-mediated SUSY,
with a chain decay to ttyy + MET. They represent two typical signal patterns at colliders: Input; 4-momenta of di-photons.

resonance and broad shape.

Process Matching Event yields
ttyy No 765
Backgrounds tty Up to one :]et 370 Input
tt Up to two jets 83 dim-8
Continuum ~-~y Up to two jets 1216
tth tth(y7y) No 167 Latent S
SUSY tt — ttyxy — ttyy + 2G No 226 atent space

dim-2

Loss function:
preselect the events, as [34] does, by requiring two hardest photons (pr > 25 GeV, |n| < 2.37

but with an exclusion of 1.37 < |n| < 1.52), one isolated lepton (pr > 10 GeV, |n| < 2.7 but
with an exclusion of 1.37 < |n| < 1.52 for electrons), at least two central jets (pr > 25 GeV

m2  m!? (M —ml )2
U=lz—a+ex | =L+ 2 ) +ex 20
and |n| < 2.4) and one b-tagged jet (pr > 25GeV and || < 2.4) with a b-tagging efficiency o2 o2 o2,
— 1 2 Y

of 70% determined by the t¢ sample. The event yields after the preselection are summarized
in Tab. 2. In addition cnerate 1.3 x 10° back@ﬁs satisfying the preselection

criteria for defining reference sample.

c=10

13
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'y Conclusion

Isolation-based and Clustering-based evaluators manage to detect novelty along different
strategies. Synergy of the 2 shines light on improving the performance of novelty detection.

We have worked on 9 two-dimensional Gaussian samples which mimic a broad range of NP
scenarios. The geometry mean of the isolation-based and clustering-based evaluators is used
as the synergy-based one. Then it is further optimised with a DNN, which shows encouragingly
comparable AUC values with supervised learning. The robustness is tested and is compared
with fully weakly supervised learning.

We have applied our algorithm onto physical benchmark studies with signal either forming a
resonance or a broad shape. The analysis is done at detector level and it reaches a discovery
confidence level comparable to the dedicated supervised learning search under the framework
of invariant-mass-preserving-autoencoder.
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