Searches for New
Phenomena in
Leptonic or Hadronic
Final States using the
ATLAS Detector

Avik Roy on behalf of the ATLAS Collaboration

- ATLAS collected 139 fb⁻¹ pp data for physics analyses in run-2 (2015-2018)
- A large number of analyses are analyzing this data for precision measurements and BSM searches
- Relatively recent analyses with hadronic/leptonic final states covered here

ATLAS-CONF-2021-018

- Search for -⅓ charged VLB quark decaying to H + b with H → bb
- All hadronic final state: reconstructed Higgs Candidate (HC) based on large-R jet pT, mass, and associated b-tagged track jets
- Fitted on reconstructed VLB mass: mB =
 m(HC + jet) with dR(jet, HC) > 2.5
- Data driven estimation for QCD multijet background using ABCD method

$$N_A = N_B \times (N_C / N_D)$$

- Excludes VLBs up to 2 TeV in doublet representations for moderate and higher couplings
- Interpretation: Limits on coupling as a function of VLB mass for doublet representation

ATLAS-CONF-2021-019

- Search for resonances decaying to a pair of b jets: fully hadronic final state
- Dedicated tri-jet trigger with asymmetric thresholds - data cannot be modelled by usual empirical functional forms
- Background estimation based on functional decomposition with exponential basis functions
- Z' mass excluded up to 1.45 TeV

arxiv:2010.02566

- Single lepton (e/ μ) final state with hadronic τ candidate
- Reconstructed τ from 1 or 3 matched jet tracks (1 prong / 3 prong taus)
- Multiple neural networks trained to classify signal against W+jets, $Z\rightarrow \tau\tau$, and $Z\rightarrow ll$
- Combined NN output is determined by a weighted mean squared value of the NN outputs
- Limits on LFV BRs supercede the previous bounds from LEP

arXiv:2008.07949

- Di-lepton (e/µ) + inclusive di-jet final state
- Opposite sign and same sign signatures
- Control, validation, and signal regions defined according to the OS/SS category along with the lepton flavor combination

	OS (é	$e^{\pm}\ell^{-} = e^{\pm}e^{-}, e^{\pm}\mu^{\mp}, \mu$	$(\mu^{+}\mu^{-})$	SS $(\ell^{\pm}\ell^{\pm} = e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm})$			
	Top CR		\dot{s} R	Diboson CR	m_{jj} VR	\hat{SR}	
N(jet)	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	
$N(b ext{-jet})$	≥ 2	0	0	0	0	0	
m_{jj} [GeV]	(60, 100)	$(35,60) \cup (100,125)$	(60, 100)	$(0,60) \cup (100,300)$	$(0,60) \cup (100,300)$	(60, 100)	
$m_{\ell\ell}$ [GeV]	≥ 110	≥ 110	≥ 110	≥ 100	≥ 100	≥ 100	
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	≥ 5	≥ 10	≥ 10	≥ 5	≥ 5	≥ 7.5	
$\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},\ell)_{\mathrm{min}}$	_	_	≥ 1	_	_		
$p_{\mathrm{T}}(jj)$ [GeV]	_	_	≥ 100	_	_	≥ 60	
$p_{\mathrm{T}}(\ell\ell)$ [GeV]	_	_	≥ 100	_	_	≥ 100	
$H_{\rm T} + E_{\rm T}^{\rm miss}$ [GeV]	≥ 300	≥ 300	≥ 300	(300, 500)	≥ 500	≥ 300	

- Data-driven estimation of misidentified leptons and fake
- Binned likelihood fitting of H_T (scalar sum of jet and lepton p_T) + MET
- Excludes masses up to ~800 GeV for doublet masses

arxiv:2006.12946

- Model-independent non-resonant search with control and signal regions defined based on interference pattern according to Contact Interactions (CI) model
- Background fitted against a smoothly falling functional form in CR and extrapolated in the SR
- Limits interpreted in terms of compositeness energyscale (Λ) for all combinations of dilepton chirality structure and interference type

ATLAS-CONF-2021-011

- 22 signal regions based on invariant mass of leptons, on/off-shell Z and MET threshold
- Additional WZ and ZZ control regions for 3l and 4l selections
- Fakes estimated by determining data-driven fake factors in dedicated regions and propagating them to CR/SRs
- Cross-section upper limits calculated in each SR (appended in backup)

Summary

- Recent ATLAS results setting strong constraints on model-specific and model-independent BSM searches
- ATLAS continues work on BSM searches with the Run 2 dataset. More results are in the pipeline
- Additional ATLAS results presented in dedicated LQ, Higgs pair production talks

LFV: $Z \rightarrow T + e/\mu$

Link to Results

Combined NN output

Three and Four Lepton Final States

Link to Results

-					-						
Mass Range	N ₉₅ (exp.)	N ₉₅ (obs.)	$\sigma_{ m vis}$ [fb] (exp.)	$\sigma_{ m vis}[{ m fb}]$ (obs.)	Mass Range	N ₉₅ (exp.)	N ₉₅ (obs.)	$\sigma_{ m vis}$ [fb] (exp.)	$\sigma_{ m vis}[{ m fb}]$ (obs.)		
3ℓ , On-Z, $E_{\rm T}^{\rm miss} < 50~{ m GeV}$					3ℓ , Off-Z, $E_{\rm T}^{\rm miss} > 50 \; {\rm GeV}$						
<200 GeV	96 +38	90	$0.69^{+0.27}_{-0.19}$	0.65	<200 GeV	104 +39 -29	96	$0.75^{\ +0.28}_{\ -0.21}$	0.69		
200-400 GeV	$77 + \overline{30} \\ -21$	61	$0.55_{-0.15}^{+0.22}$	0.44	200-400 GeV	96^{+36}_{-27}	109	$0.69^{+0.26}_{-0.19}$	0.79		
400-600 GeV	$25 \stackrel{+10}{-7}$	21	$0.18^{+0.08}_{-0.05}$	0.15	400-600 GeV	$34 + \frac{13}{-9}$	35	$0.24^{+0.10}_{-0.07}$	0.25		
>600 GeV	14^{+6}_{-4}	7	$0.10^{+0.04}_{-0.03}$	0.05	>600 GeV	21^{+9}_{-6}	14	$0.15 \stackrel{+0.06}{_{-0.04}}$	0.10		
3ℓ , On-Z, $E_{\rm T}^{\rm miss} > 50~{ m GeV}$				4ℓ , On-Z, $E_{\rm T}^{\rm miss} < 50~{ m GeV}$							
<200 GeV	406 +144	284	$2.9^{+1.0}_{-0.8}$	2.0	<400 GeV	32 +13	45	$0.23_{-0.06}^{+0.09}$	0.32		
200-400 GeV	$311 {}^{+109}_{-87}$	251	$2.2^{+0.8}_{-0.6}$	1.8	>400 GeV	14^{+6}_{-4}	16	$0.10^{+0.04}_{-0.03}$	0.11		
400-600 GeV	61^{+23}_{-17}	52	$0.44^{+0.16}_{-0.12}$	0.37	4ℓ , On-Z, $E_{\mathrm{T}}^{\mathrm{miss}} > 50 \; \mathrm{GeV}$						
>600 GeV	27^{+11}_{-8}	16	$0.19 ^{+0.08}_{-0.05}$	0.11	400 0 77						
					<400 GeV	20^{+8}_{-6}	35	$0.14^{+0.06}_{-0.04}$	0.25		
3ℓ , Off-Z, $E_{\rm T}^{\rm miss} < 50~{ m GeV}$					>400 GeV	14^{+6}_{-4}	15	$0.10^{+0.04}_{-0.03}$	0.11		
<200 GeV	72^{+29}_{-20}	69	$0.52^{+0.21}_{-0.15}$	0.50	4ℓ, Off-Z						
200-400 GeV	60^{+24}_{-17}	67	$0.43^{+0.17}_{-0.12}$	0.48	<400 GeV	12 +5	13	0.00 +0.04	0.09		
400-600 GeV	$25 {}^{+10}_{-7}$	12	$0.18^{+0.07}_{-0.05}$	0.08		12^{+5}_{-3}		$0.09^{+0.04}_{-0.02}$			
>600 GeV	15^{+7}_{-4}	16	$0.11^{+0.05}_{-0.03}$	0.11	>400 GeV	9 +4	6	$0.065^{+0.030}_{-0.018}$	0.044		
			0.03						14		