Search for vector-like quarks at CMS

Francesco Fabozzi

INFN-Napoli & Università della Basilicata

On behalf of the CMS collaboration

Pheno 2021
Phenomenology 2021 Symposium

24-26 May 2021

Outline

- Recent results on the searches for vector-like quarks (VLQ) at the CMS detector at the LHC
 - Based on LHC Run 2 (13 TeV) collision data
 - First results on full Run 2 dataset
- All public results on VLQ searches at CMS can be accessed from the Beyond-Two-Generations Group public web page
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/ PhysicsResultsB2G

Vector-like quarks (VLQ)

Spin ½ fermions predicted by several extensions of the Standard Model (SM)

- Left- and right-handed components behave the same under the SM symmetry group
- Vector current couplings to the weak gauge bosons
- VLQ mass may arise from non-Yukawa coupling terms

Type	Charge
Т	+2/3
В	-1/3
X	+5/3
Υ	-4/3

SU(2) multiplets		
Singlets	T, B	
Doublets	(T, B), (X, T), (B, Y)	
Triplets	(X, T, B), (T, B, Y)	

VLQ production at LHC and decay

Pair production

- Strong interaction processes
- Model independent cross section, depending on VLQ mass
- Cross section suppressed for large VLQ mass

Single production

- Electroweak processes
- Cross section depending on VLQ mass and (model dependent) coupling to SM particles
- Models foresee preferential mixing with 3rd generation SM quarks

Туре	Decay channels
Т	tZ, tH, bW
В	bZ, bH, tW
X	tW
Υ	bW

Branching ratios (BR) depending on VLQ mass and model (multiplet configuration, couplings to SM quarks)

BB → fully hadronic

PRD 102 (2020) 112004 B2G-19-005

Targeting bH and bZ decay channels

First full Run 2 (137 fb⁻¹) result for pair production!

Investigated $m_B > 1$ TeV mass range

- boosted regime of B decay products: jets from boson decays may overlap

Large radius jet ("wide jet") reconstruction + jet substructure techniques to identify boosted bosons (H/Z tagging)

Signal selection strategy

- 6 high p_{T} jets in the final state
- $H_{T} > 1350 \text{ GeV}$
- b-tagging of jets

Reconstruction of the decay chain and event assignment to a certain final state: chi2-like metrics

9 event categories defined according to number and type of reconstructed jets and final state assignment

BB → fully hadronic

Main background: QCD multijets, determined from data

- Exponential fit to B mass distribution before b tagging requirement
- Rate of background jets passing b tagging requirements (bakground jets tagged fraction) estimated from low m_{VLQ} sideband region
- Bakground tagged fraction propagated to high mass using a high chi2 control region

No significant excess of data with respect to the expected background observed

BB → fully hadronic

95% CL upper limits on cross section as a function of B mass and BR of bZ and bH decay channels

Summary on pair production searches

Summary before B2G-19-005

Vector-like quark pair production

Summary on pair production searches

Single $T \rightarrow tZ$

PAS B2G-19-004

First full Run 2 result for single production!

Large range of T masses investigated: [600, 1800] GeV

- Different boost regimes of top → employ 3 algorithms to reconstruct the top candidate

Single T→ tZ

Signal selection strategy

- MET > 200 GeV
- Lepton veto
- min $(\Delta \phi_{MET. Jets}) > 0.6$
- Jet from top decay is b-tagged

6 event categories depending on topology of reconstructed top candidate and presence of reconstructed forward jets

Signal extraction: simultaneous fit to transverse mass of the top and MET system in each categories

$$M_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\mathrm{t}}p_{\mathrm{T}}^{\mathrm{miss}}\left(1-\cos\Delta\phi_{\mathrm{t},\vec{p}_{\mathrm{T}}^{\mathrm{miss}}}\right)}$$

Main backgrounds in signal region: ttbar, V+jets (V=W, Z)

Data driven method to determine M_T distribution in signal region for the main backgrounds

 Correction factors to simulation extracted from specific control regions

Single T→ tZ

95% CL limits on cross section x BR($T \rightarrow tZ$), assuming Tbq production channel (major production mode for a singlet T)

Local excess of 2.4 σ for m_T = 1.4 TeV (driven by an excess in data observed in resolved category)

Limits as a function of mass and resonance width

 $m_T < 1.4 \text{ TeV}$ excluded for $\Gamma/m_T = 30\%$

Single T→ tX (X=H, Z) fully hadronic

Tbq and Ttq production channels

JHEP 01 (2020) 036 B2G-18-003

Based on 2016 dataset (36 fb⁻¹)

Final state characterized by up to 7 (Tbq) or 9 (Ttq) jets

Two analyses developed, targeting two VLQ mass ranges:

Low mass: 0.6 – 1.2 TeV

- High mass: > 1 TeV

Main backgrounds: QCD, ttbar

Single T→ tX (X=H, Z) fully hadronic

Low mass analysis

- 5 resolved jets from T decay
- Chi2-based sorting algorithm to assign jets to top / W / H / Z decay
- Signal and control regions based on the b tagging of the jets

High mass analysis

- top and H/Z from T decay reconstructed as wide jets passing top and H/Z tagging criteria
- b-tagging requirements applied to subjets of wide jets
- Six mutually exclusive control regions to predict the shape and rate of background from data

Signal extraction from simultaneous fit to the T candidate invariant mass in the signal and control regions

Single T→ tX (X=H, Z) fully hadronic

95% CL limits on cross section x BR for each channel and their sum for Γ/m_{τ} up to 30%

Summary on single production searches

Summary before B2G-18-003, B2G-19-004

Summary on single production searches

New upper limits from full Run 2 $T\rightarrow tZ$ and fully hadronic $T\rightarrow tH$ analyses

Conclusions

- Presented recent results on the searches for VLQs at CMS based on LHC Run 2 data
 - First results on full Run 2 dataset (~ 137 fb⁻¹)
- No evidence of VLQs so far
 - Pair production searches providing stringent exclusion limits on VLQ mass
 - Single production searches setting stringent constraints using common benchmark models
- Stay tuned
 - More results from full Run 2 dataset to come
 - New Run 3 starting next year will provide additional data to search for VLQs