Searches for leptoquarks with the ATLAS detector

André Sopczak, on behalf of the ATLAS Collaboration

IEAP CTU in Prague

Pheno 2021, Pittsburgh 24-26 May 2021

Outline

- Introduction
- B-anomalies and dedicated search for bsll
- Third Generation Leptoquarks
- First and Second Generation Leptoquarks
- Relation of Searches for Supersymmetry and Leptoquarks
- Summary
 - Up-type Third-Generation Model (LQ₃^u)
 - Down-type Third-Generation Model (LQ^d₃)
 - Up-type Mixed-Generation Model (LQ^u_{mix})
 - Down-type Mixed-Generation Model (LQ^d_{mix})
- Conclusions

Introduction Leptoquarks (LQ)

- Colour triplet bosons with fractional charge
- LQ decay flavour-diagonal and possibly cross-generations
- Yukawa interaction with coupling $\pmb{\lambda}$

Pair-production

single-production

large resonant cross-section cross-section $\propto \lambda^2$ sensitive for large m_{LQ}

B=0

tν

LQ decay

LQup

B=1

bτ

B-anomalies and dedicated search for bsll

• Leptoquarks gain enhanced interest as a possible explanation of the B-anomaly (violation of lepton universality) LHCb, arXiv:2103.11769

• In ATLAS, a dedicated search was performed for bsll.

Search for new phenomena in final states with two leptons and one or no b-tagged jets, ATLAS-CONF-2021-012

 Benchmark signal model (inspired by the B-meson anomalies): four-fermion contact interaction between two quarks (b,s) and two leptons (ee or μμ),.

Model is characterized by the energy scale and coupling, Λ and g_*

Data and SM background, ATLAS-CONF-2021-012

Pheno 2021, A.Sopczak

Summary of relative systematic uncertainties for signal regions with $m_{\ell\ell}^{min}$ = 2000 (1500) GeV, ATLAS-CONF-2021-012

Source	$e^+e^- + 0b (1b) [\%]$		$\mu^{+}\mu^{-} + 0b \ (1b) \ [\%]$	
	Signal $0b$ $(1b)$	Background 0b (1b)	Signal 0 <i>b</i> (1 <i>b</i>)	Background $0b$ (1b)
Luminosity	1.7 (1.7)	1.6 (1.5)	1.7 (1.7)	1.7 (1.7)
Pile Up	<0.5 (<0.5)	<0.5 (0.7)	<0.5 (<0.5)	<0.5 (<0.5)
Leptons	8.7 (8.6)	8.6 (6.3)	8.5 (6.5)	9.1 (4.2)
Jets	<0.5 (1.8)	<0.5 (3.4)	<0.5 (1.6)	<0.5 (1.9)
b-tagging	<0.5 (1.4)	<0.5 (2.0)	<0.5 (1.4)	<0.5 (2.2)
Top Bkg. Extrapolation	-	3.5 (32.0)	-	<0.5 (36.0)
Multijet Extrapolation	-	7.5 (15.0)	-	-
Top Quark Theory	-	<0.5 (<0.5)	-	<0.5 (<0.5)
Z Theory	-	9.4 (4.3)	-	10.0 (5.5)
MC Statistics	0.6 (0.8)	1.9 (3.5)	0.7 (1.0)	1.7 (2.4)
Total	8.9 (9.1)	15.0 (37.0)	8.7 (7.1)	14.0 (37.0)

- Contact interactions with $\Lambda/g_* < 2.0$ (2.4) TeV excluded for e (μ) at 95% CL, still far from the value which is favored by the B-meson decay anomalies.
- Model-independent limits set as a function of di-lepton invariant mass, for the reinterpretation of the results in terms of other signal scenarios.

bb+MET, with taus search, pair production of third-generation leptoquarks, ATLAS-CONF-2021-008

- Search for Supersymmetry with scalar top (stop) has sensitivity for Leptoquark pair-production.
- Decay

tνtν, bτbτ, bνbν, tτtτ

• Charge 2/3e (left) and -1/3e (right).

Third Generation Leptoquarks, ATLAS-CONF-2021-008

]	Di-tau preselection			Single-tau preselection					
$E_{\rm T}^{\rm miss}$ -trigger fired and $E_{\rm T}^{\rm miss} > 250 {\rm GeV}$									
No light leptons (e/μ)									
At least two jets									
At least one <i>b</i> -tagged jet									
At least two hadronic tau candidates Exactly one hadronic tau candidate									
At least two <i>b</i> -tagged jets									
Variable	CR $t\bar{t}$ (2 real τ)	CR $t\bar{t}$ (1 real τ)) VR $t\bar{t}$ (2 real	τ) VR $t\bar{t}$ (1 real	al τ) SR				
$E_{\mathrm{T}}^{\mathrm{miss}}$					> 280 GeV				
$OS(\tau_1, \tau_2)$	1		1		1				
$m_{\mathrm{T2}}(au_1, au_2)$	< 35 GeV	< 35 GeV	[35, 70] GeV	[35, 70] G	eV > 70 GeV				
$m(\tau_1, \tau_2)$	> 50 GeV	> 50 GeV			_				
$m_{\mathrm{T}}(au_{1})$	> 50 GeV	< 50 GeV	> 70 GeV	< 70 Ge	V —				
Variable	CR $t\bar{t}$ (1 real τ)	CR single top	VR $t\bar{t}$ (1 real τ)	VR single top	SR				
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV	> 280 GeV				
s _T	[500, 600] GeV	_	> 600 GeV		> 800(600) GeV				
$\sum m_{\mathrm{T}}(b_{1,2})$	[600, 700] GeV	> 800 GeV	[600, 700] GeV	> 800 GeV	> 700 GeV				
$m_{ m T}(au)$	_	< 50 GeV	—	[50, 150] GeV	> 300(150) GeV				
$p_{ m T}(au)$	_	> 80 GeV	—	> 80 GeV	— (binned)				

Expected and observed exclusion contours at 95% CL, as a function of m(LQ) and the branching ratio $B(LQ_3^{u/d} \rightarrow q\ell)$ into charged leptons, ATLAS-CONF-2021-008

For B(LQ^u \rightarrow b τ)=0.5 and B(LQ^d \rightarrow t τ)=0.5, limits for LQs reach 1.25 TeV

Pheno 2021, A.Sopczak

bb+MET: pair production of third-generation down-type leptoquarks, arXiv:2101.12527

- Searches for bb+MET Supersymmetric prompt decays have sensitive to pair production of 3rd generation LQs
- Expected and observed mass limits, and cross-section upper limits at 95% CL.

tt+MET, all-hadronic search, pair production of thirdgeneration down-type leptoquarks arXiv:2004.14060

- Searches for tt+MET all-hadronic Supersymmetric prompt decays have sensitive to pair production of 3rd generation LQs
- Z+jets (Z), tt+Z (TTZ), ttbar (T), W+jets (W), and single-top (ST) backgrounds

tt+MET, all-hadronic search, arXiv:2004.14060

• Excluded LQ₃^u (masses, branching ratios) and cross-section limits for LQ₃^u pair-production

Summary: Up-type Third-Generation Model (LQ₃^u) bτbv ATLAS-CONF-2021-008, stop-Ol EPJC 80 (2020) 737

Summary: Down-type Third-Generation Model (LQ^d₃) bτbv ATLAS-CONF-2021-008, *t*τ*t*τ arXiv:2101.11582, sbottom-0ℓ arXiv:2101.12527

Summary: Up-type Mixed-Generation Model (LQ^u_{mix}) bebe, bµbµ JHEP 10 (2020) 112, stop-O& be, bµ EPJC 80 (2020) 737

stop-0 ℓ re-interpretation for mixed generation. Published for B(LQ \rightarrow b τ) limits. Highest sensitivity for B(LQ \rightarrow tv) =1.

Summary: Down-type Mixed-Generation Model (LQ^d_{mix}) tete, tµtµ EPJC 81 (2021) 313, sbottom-O& te, tµ arXiv:2101.12527

sbottom-0 ℓ reinterpretation for mix-generation limits. Published for B(LQ \rightarrow t τ) limits. Highest sensitivity for B(LQ \rightarrow bv) =1

Pheno 2021, A.Sopczak

ATLAS LQ lower limit (TeV) at 95%CL

2nd-3rd cross.-gen. LQ \rightarrow qµ 1st-3rd cross.-gen. LQ \rightarrow qe 2nd-3rd cross.-gen. LQ \rightarrow tµ 1st-3rd cross.-gen. LQ \rightarrow te 3rd gen. LQ \rightarrow t/b τ B=0.5 2nd generation 1st generation

Summary

Same final states for Higgs boson production and Leptoquark production

- Example LQ pair-production and ttH ($H \rightarrow \tau \tau$), 2lSS1tau(had).
- Potential for reinterpreting Higgs boson results for LQ searches.

Conclusions

- Growing interest in Leptoquarks as a possible explanation of the recently observed B-anomaly (hints for lepton flavour universality violation)
- Contact interaction limit $\Lambda/g^* > 2.0$ (2.4) TeV at 95% CL for ee ($\mu\mu$). Not sensitive yet to probe suggested range by B-anomaly (~30 TeV).
- Model-independent limits set as a function of di-lepton invariant mass.
- Current focus on 3rd generation, including cross-generational decays.
- Direct searches for Leptoquarks and re-interpretations of searches for Supersymmetry exclude phase-space of 1st, 2nd and 3rd generation Leptoquarks. Potential for reinterpretations of Higgs boson results.
- Search results statistically limited, expect more sensitivity with new data.
- Large potential in flavour physics for collaborations of phenomenologists and experimentalists.

References

Motivated by B-anomalies

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-012/

• ATLAS Supersymmetry group

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-008/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-34/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-12/

• ATLAS Exotics group

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-19/ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-15/ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-13/