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SUEP (Soft Unclustered Energy Patterns)

• SUEP is a particular dark shower signature that arises in hidden valley 
models with confinement and a large, pseudo-conformal ‘t Hooft coupling 
[Strassler 2008, Knapen et al. 2016]. 

• Shower of final-state Standard Model particles: 
• High multiplicity.
• Democratic momentum distribution.
• Near-isotropic emission angles in shower rest frame. 

• Prompt hadronic SUEP looks very similar to QCD background (pile-up). 

• Strongly coupled dynamics severely limit our theoretical modelling 
abilities. 

• No searches currently exist. How can we look for it? 
• In particular: Look for exotic Higgs decays to SUEP.



Unsupervised Machine Learning

• Neural network classifiers are usually trained using samples of both 
background and signal data, with the class labels available to the 
network. 

• Without confidence in the details of the signal model, we should 
avoid using it in training. 

• Instead, we use an unsupervised approach, training only on 
background. 

• Work towards a neural network that functions as an anomaly 
detector for SUEP. 



Autoencoders

• Autoencoders train to efficiently encode their 
inputs. 

• Practically speaking, they try to learn the identity 
map on their training data. 

• Restricting the capacity of the network forces it 
to encode features of the training data in a lower-
dimensional space. 

• When evaluated on unfamiliar data, the 
autoencoder fails to reconstruct its input. 

• High test loss values flag anomalous events. 

Diagram of a typical autoencoder 
architecture.



Two important questions

•What data representation is most effective 
for SUEP?

•What autoencoder architecture is most 
effective for SUEP? 



Data representation

• Neural networks for jet physics often use jet images – discretized 
grids of calorimeter energy depositions, centered on the jet axis [3]. 

• SUEP has no jet axis, because we need to consider the entire event,
not just one jet.

• Instead consider the inter-particle distance matrix

Δ𝑅𝑖𝑗 = Δ𝜂𝑖𝑗
2
+ Δ𝜙𝑖𝑗

2
. 

• Invariant under rotations in 𝜙. 

• Encodes information about angular correlations between particles.

• We use it as our data representation for the autoencoder.



Autoencoder architecture

• Recently, advanced jet classifiers like 
ParticleNet [4] have made use of graph 
neural networks, using Δ𝑅𝑖𝑗 to define a 
graph structure on jets. 

• Following this example, we designed a 
graph autoencoder for SUEP. 
• Graph edges connect each particle to its 𝑘

nearest neighbours in Δ𝑅.
• The node features are the Δ𝑅 values as 

well. 
• The autoencoder trains to reconstruct the 

node features.

• Also trained a very basic fully
connected autoencoder, acting on the
flattened Δ𝑅𝑖𝑗 matrix. 

• Surprising result: Simple architecture 
works much better!

Note: Maximum signal efficiency < 1 because of trigger and pre-selection cuts. 



Results

• Scenario: Exotic Higgs decay to SUEP, triggering on lepton(s) from 
associated vector boson production. 

• We measure performance with two different metrics:
• The Area Under Curve (AUC) of the ROC curve defined by the classifier

• The smallest branching ratio of Higgs to SUEP we can exclude.

• Assume 1% systematic uncertainty on background rate when 
estimating detection significance. 



Results

Preliminary Preliminary

Autoencoder is sensitive to branching ratios of 2%!



Conclusions

• Without a reliable, detailed model of the signal, we conservatively
choose to train an unsupervised model to search for SUEP at the LHC. 

• The inter-particle distance matrix is an effective representation for
this type of event. 

• Sophisticated machine learning techniques appear to be unnecessary 
or even detrimental when compared to a very simple architecture. 

• For dark sector hadron masses between 1 and 8 GeV, these 
unsupervised techniques can probe branching ratios of the Higgs 
boson to SUEP down to ≈ 5 − 10%, and below 1 GeV down to ≈ 2%. 
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