Searches for New Long-lived Particles with the ATLAS detector

Graphics by <u>H. Russell</u>

Jackson Burzynski, on behalf of the ATLAS Collaboration | PHENO 2021

Why long-lived particles?

Elephant in the Zoom: where is the new physics?

Absence of new physics at TeV scale motivates increasing focus on searches for weakly-coupled new particles and exotic signatures

- Particle lifetime remains an **underexplored** parameter of phase space

plenty of LLPs in the SM!

 h_0

• Long-lived particles (LLPs) can elude the majority of BSM searches and provide striking detector signatures

Searching for LLPs

ATLAS has a **growing program** of LLP searches:

Common themes:

- trigger challenges
- small, unconventional backgrounds
- specialized reconstruction methods

- → dedicated triggers or **associated production**
- → data driven background estimates
- → dedicated "large radius tracking" (LRT); secondary vertex reconstruction

Displaced Leptons

<u>arXiv:2011.07812</u>

General search for pairs of large-|d₀| leptons

Benchmark model: Gauge-mediated SUSY breaking (GMSB)

- Lightest SUSY particle (LSP) is the nearly massless gravitino
- Next-to-lightest SUSY particle (NLSP) is the slepton (smuon, selectron, stau)
- slepton long-lived due to small gravitational coupling to LSP

Unprobed at LHC!

• LEP limits (previous best) constrain masses below $\sim 65-90$ GeV

• Aims to address a **gap in coverage** left by searches that require displaced leptons to originate from common vertex

Analysis Strategy

Displaced lepton reconstruction

- Large radius tracking recovers efficiency up to 100mm
- Standard lepton identification algorithms modified by removing requirements on $|d_0|$ and number of hits matched to track

Use triggers without track requirements

- Muon trigger with no ID track requirement
- Single/di-photon triggers

Signal regions: ee | eµ | µµ

All leptons required to satisfy:

- pT > 65 GeV
- ΔR between leptons > 0.2
- $|d_0| > 3 \text{ mm}$
- isolated from activity in ID and calorimeter

Additional requirements placed on muons to reject cosmics

Background estimate

SR-ee/SR-eµ: dominant backgrounds are fake leptons and heavy flavor decays

- Data driven **ABCD method** used to predict background: $N_A = N_C^*(N_B/N_D)$
- Validated by inverting isolation and track quality requirements

	VR- <i>ee</i> -fake	VR- <i>ee</i> -heavy-flavor	VR- <i>e</i> µ-fake	VR-e
Estimate	1356 ± 49	23.5 ± 1.9	$1.9^{+1.8}_{-1.0}$	
Observed	1440	26	2	

SR-µµ: dominant background is **cosmic muons**

- ABCD-like method with ratio of good to bad cosmic-tagged muons used as transfer factor
- Validated by modifying the cosmic tag window to leave more muons untagged

Zero events observed in all signal regions

Region	SR-ee	$SR-\mu\mu$	SR- <i>e</i> µ
Fake + heavy-flavor	0.46 ± 0.10	< 10 ⁻⁴	$0.007^{+0.019}_{-0.007}$
Cosmic-ray muons	_	$0.11\substack{+0.20 \\ -0.11}$	_
Expected background	0.46 ± 0.10	$0.11_{-0.11}^{+0.20}$	$0.007^{+0.019}_{-0.007}$
Observed events	0	0	0

Limits set on slepton masses and lifetimes

- For lifetimes of 0.1 ns, selectron, smuon and stau masses up to 720 GeV, 680 GeV, and 340 GeV are excluded
- First results from LHC provide significant improvement over LEP

This model-independent result is applicable to any BSM model with high-pt displaced leptons!

Disappearing tracks ATLAS-CONF-2021-015

Several SUSY models predict pure wino or pure higgsino LSPs

• Well motivated by dark matter and naturalness arguments

Small mass splitting between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ makes $\tilde{\chi}_1^{\pm}$ long-lived

• natural lifetimes ranging from 0.02 ns (higgsino) to 0.2 ns (wino)

Chargino decays to **soft pion** (not reconstructed) and **LSP** (MET)

• Gives rise to unique signature of a **disappearing track**

Analysis Strategy

Trigger on MET from LSP; veto leptons

Two channels targeting **electroweak** and **strong** production modes

Tracklets required to satisfy:

- 4 pixel hits; 0 SCT hits (disappearing criteria)
- isolated from other tracks in the event
- isolated from calorimeter deposits (**new**)

Results extracted from simultaneous fit of tracklet pt spectrum in signal and control regions

Jackson Burzynski | UMass Amherst

9

Background estimate

Two sources of background: combinatorial fakes and charged particle scattering

p_T template measured in **fake enriched** CR

- defined by inverting cut on tracklet $|d_0|$
- fit tracklet p_T distribution to determine shape

p_T templates measured in **single charged particle** CRs

electron good e no-e MET

- \bullet pixel tracklet using $Z \rightarrow \ell \ell$ tag-and-probe
- hadron CR
- resolution

muon	hadron
good µ	good track
no- µ MET	standard MET

measure probability that lepton is mis-identified as a

• **apply** to track distribution in single electron/muon/

smear track pt to match pixel tracklet momentum

relative contributions constrained via **likelihood fit** in low MET CR

Estimate validated in **sidebands** of calorimeter isolation and **low tracklet p**_T region

Signal region requires 1 tracklet with $p_T > 60 \text{ GeV}$

Results

No excess observed above SM backgrounds

electroweak:

 chargino masses up to 660 (210) GeV excluded for pure wino (higgsino) models

strong:

• gluino masses below 2.1 TeV are excluded for a chargino mass of 300 GeV

most stringent limits to date for natural lifetimes

Jackson Burzynski | UMass Amherst

Run Number: 308084, Event Number: 2658892674

Date: 2016-09-09 19:14:14 UTC

Stopped particles

arXiv:2104.03050

Search for particles which come to rest within the ATLAS calorimeters and decay in empty bunch crossings

• First ATLAS search for stopped particles at 13 TeV!

Benchmark model: **SUSY R-hadrons**

- If squarks are sufficiently heavy, gluino can be long-lived
- composite states (R-hadrons) may be **slow-moving** and come to rest
- stopped gluino could decay significantly later than the bunch crossing in which it was produced

sensitivity to gluino lifetimes across several orders of magnitude

• 10⁻⁷ to 10⁷ s

Analysis Strategy

Trigger on jets in empty bunch crossings

• MET > 50 GeV, jet $p_T > 55$ GeV

Two signal regions:

- leading jet $p_T > 150 \text{ GeV}$
- PV veto, muon veto
- jet $|\eta|\,<$ 0.8 (SRC), jet $|\eta|\,<$ 2.4 (SRInc)

Signal proportional to **luminosity** and total amount of trigger-able time during run (live time)

Dominant backgrounds: beam induced (BIB) and cosmics

• proportional to live time only

reject events with $w_{\phi} < 0.02$

$$w_{\phi} = \frac{\sum_{i} p_{\mathrm{T}}(i) \cdot |\Delta \phi(\mathrm{jet}, i)|}{\sum_{i} p_{\mathrm{T}}(i)}$$

Background estimate

Jet p_T templates extracted for cosmics and BIB in dedicated control regions

<u>BIB</u>

CR: BIB sample with $w_{\phi} > 0.01$

- **measure** jet p_T spectrum template in CR
- **normalize** template in low jet p_T region: $90 < p_T < 150$ GeV

<u>cosmics</u>

CR: search sample + BIB sample with α < 0.2

- **measure** jet p_T spectrum template in CR
- **normalize** with transfer factor computed from cosmic run with no proton fill N_{SP}^{cosm}

 $TF = \frac{N_{SR-like}^{cosmic-sample}}{TF}$ $N_{CR-like}^{cosmic-sample}$

Jackson Burzynski | UMass Amherst

Results

No excess observed above SM backgrounds

limits set on gluino R-hadron benchmark

• span 15 orders of magnitude!

significant improvement over Run 1 results

Exotic Higgs decays in the ID

ATLAS-CONF-2021-005

Many BSM models predict **exotic Higgs decays**

- Top down: Neutral naturalness
- **Bottom up:** Dark sectors, SM+scalar

Decays back to SM via **off-shell Higgs** or **small Higgs mixing**

• higgs-like BRs

Benchmark model: pseudoscalar boson (a)

- $15 < m_a < 55 \text{ GeV}$
- $10mm < c\tau_a < 1m$

Yukawa-like branching ratios:

 \Rightarrow assume Br(a \rightarrow bb) = 100%

Jackson Burzynski | UMass Amherst

Difficult to trigger, so focus on **associated production**

• **ZH mode** provides a very clean signature

Signature of interest:

two leptons, and two **displaced vertices (DVs)** in the inner detector

Analysis Strategy

Trigger on prompt leptons from Z decay

- Two same flavor opposite sign leptons
- Offline, require
- $66 < m_{\parallel} < 116 \text{ GeV}$
- At least two jets with $p_T > 20 \text{ GeV}$

Displaced vertices are required to satisfy:

- \rightarrow removes metastable SM resonances • $n_{trk} \ge 3$
- $m/\Delta R_{max} > 3 \text{ GeV} \rightarrow \text{removes vertices from random crossings}$
- → facilitates background modeling • $\Delta R(vtx, jet) < 0.6$

Events classified based on the **number of displaced vertices** matched to jets:

Jackson Burzynski | UMass Amherst

Background estimate

Probability for a jet to contain a DV increases with **p**_T and **b-tag score (DL1)**

parameterize background using **per-jet probability map** based on these observables

Measure per-jet vertex probability in CR

Compute probability that an event contains ≥ 2 DVs from the jets in the event

$$P_{\text{event}}(n_{\text{DV}} = 1|j_{1-4}) = \sum_{i=1}^{4} P_{\text{jet}}(n_{\text{DV}} = 1|j_i) \times \prod_{k \neq i} (1 - P_{\text{jet}}(n_{\text{DV}} = 1|j_i))$$

Validate in γ +jets validation region

$1|j_k)$

Results

Zero events observed in signal region

Good agreement with background prediction

For $m_a < 40$ GeV, these are the **most stringent** limits to date in this lifetime regime

Limits set on $BR(H \rightarrow aa \rightarrow bbbb)$

• 10% branching ratios excluded between ~5 and ~100 mm

Conclusions

Long-lived particle signatures are **highly-motivated** yet **underexplored** at the LHC

ATLAS has a robust and growing program of LLP searches

- Displaced leptons \rightarrow first search at LHC, significant improvements over LEP limits
- Disappearing tracks → most stringent limits for higgsinos and winos with their natural lifetimes
- → first ATLAS search using 13 TeV data • Stopped particles
- Exotic Higgs decays to LLPs in ID \rightarrow first dedicated search at LHC, most stringent limits to date for low mass LLPs

With new techniques and more data, we are delving deeper into the lifetime frontier 😇 More Run 2 LLP results from ATLAS coming soon, and exciting prospects on the horizon for Run 3!

• LRT included in standard reconstruction! (ATL-PHYS-PUB-2021-012)

Backup

UMassAmherst

Displaced Leptons

arXiv:2011.07812

Cosmic veto

to^{avg}: average time measured by the muon's MS track segments

 $< 30 \, \rm ns$ t0^{avg} ullet

Displaced Leptons

<u>arXiv:2011.07812</u>

Systematics

Background

ee: fakes and heavy-flavor

 $e\mu$: fakes and heavy-flavor

 $\mu\mu$: cosmic muons

Jackson Burzynski | UMass Amherst

Uncertainty	Value [%]
statistical	18
isolation non-closure	11
fakes non-closure	6
total	22
statistical	+257 / -129
isolation non-closure	92
fakes non-closure	8
total	+273 / -159
statistical	+180 / -95
$R_{\text{good}} d_0 $ dependence	38
estimate variable	16.5
R_{good} definition muon	13
total	+185 / -104

Disappearing tracks

ATLAS-CONF-2021-015

Systematics

Background

	Electroweak channel $[\%]$	Strong channel [%]		Electroweak channel [%]	Strong channel
$r_{ m ABCD}$	5.2	0.9		$m_{\tilde{\chi}_1^{\pm}} = 600 \text{ GeV}$	$m_{\tilde{g}} = 1400~{ m Ge}$
$r_{ m CD}$	3.2	0.6			$m_{\star\pm} = 1100 \mathrm{G}$
σ in signal $p_{\rm T}$ smearing function	2.9	0.1			χ_1
α in signal p_{T} smearing function	1.7	0.2	Cross-section	7.6	14
p_0 parameter in the fake background $p_{\rm T}$ function	0.3	< 0.1			
p_1 parameter in the fake background p_T function	0.3	0.2	Initial/final state radiation	8.4	5.1
Normalization of muon background	0.6	< 0.1	Jet energy scale	2.3	1.5
Normalization of electron background	< 0.1	< 0.1	Jet energy resolution	0.6	0.3
α in muon p_{T} smearing function	< 0.1	< 0.1	Jet vertex tagging efficiency	< 0.1	< 0.1
σ in muon $p_{\rm T}$ smearing function	< 0.1	< 0.1	Pile-up modelling	0.7	< 0.1
α in electron p_{T} smearing function	< 0.1	< 0.1	$E_{\rm T}^{\rm miss}$ soft term	0.4	< 0.1
σ in electron $p_{\rm T}$ smearing function	< 0.1	< 0.1	Trigger officiency	0.1	
α in hadron $p_{\rm T}$ smearing function	0.5	0.2	The al-lating construction of sign of	U.J	0.4
σ in hadron $p_{\rm T}$ smearing function	0.6	0.2	Tracklet reconstruction eniciency	0.9 1 7	
			Luminosity	1.7	
			Total	11	8.1

Signal

Disappearing tracks

ATLAS-CONF-2021-015

Validation

low MET, low tracklet pT

sidebands of calorimeter isolation

Disappearing tracks

ATLAS-CONF-2021-015

Limits

Electroweak

Jackson Burzynski | UMass Amherst

Strong

Stopped particles

<u>arXiv:2104.03050</u>

Systematics

Stopped particles

<u>arXiv:2104.03050</u>

Yields

Central signal regions

Observed events

Total expected background events

Beam-induced background events Cosmic-ray-induced background events

 $m(\tilde{g}, \tilde{\chi}_1^0) = (1400, 100) \text{ GeV}$ $m(\tilde{g}, \tilde{\chi}_1^0) = (1400, 900) \text{ GeV}$

Inclusive signal regions

Observed events

Total expected background events

Beam-induced background events Cosmic-ray-induced background events

 $m(\tilde{g}, \tilde{\chi}_1^0) = (1400, 100) \text{ GeV}$ $m(\tilde{g}, \tilde{\chi}_1^0) = (1400, 900) \text{ GeV}$

SRC (2017 data)	SRC (2018 data)
92	100
88 ± 28	119 ± 32
37 ± 23	72 ± 29
51 ± 21	47 ± 19
5	6
5	6

SRIncl (2017 data)	SRIncl (2018 data)
239	221
167 ± 48	208 ± 50
93 ± 42	139 ± 45
74 ± 30	69 ± 28
7	9
7	8

Exotic Higgs decays

ATLAS-CONF-2021-005

Vertex selection

Selection type Track pruning

Vertex preselection

Vertex selection

Jackson Burzynski | UMass Amherst

Requirement
$ d_0^{\rm DV} < 0.8 \rm mm$
$ z_0^{\rm DV} < 1.2 \rm mm$
$\sigma(d_0^{\rm DV}) < 0.1 \text{ mm}$
$\sigma(z_0^{\rm DV}) < 0.2 \rm mm$
$\chi^2/n_{\rm DoF} < 5$
<i>r</i> < 300 mm
$ z < 300 \mathrm{mm}$
pass material veto
$n_{\rm trk} > 2$
$m/\Delta R_{\rm max} > 3 { m GeV}$
$r/\sigma(r) > 100$
$\max(d_0) > 3 \text{ mm}$
$\Delta R_{\rm jet} < 0.6$

Exotic Higgs decays

ATLAS-CONF-2021-005

Filter

Jackson Burzynski | UMass Amherst

Diagram inspired by <u>Kate Pachal's LHC seminar</u>

Exotic Higgs decays

ATLAS-CONF-2021-005

Systematics

Dominant uncertainty from LRT

 Measure by comparing yields of K-short vertices in data and MC

Source	Uncertainty (%)
Theory	4.7
Luminosity	1.7
Pileup reweighting	2.6
Electron identification	1.6
Electron calibration	0.4
Muon reconstruction	0.9
Muon calibration	0.4
Electron trigger	0.7
Muon trigger	1.3
Jet energy scale	1.4
Jet energy resolution	1.3
Filter	2.8-3.8
LRT	2.4-12
Total	7.4-14