Heavy Dirac/Majorana Fermion Decays

[2104.05719] (+Ongoing work) with André de Gouvêa, Patrick Fox, and Boris Kayser

Kevin Kelly, Fermilab PHENO2021

Heavy Fermions, why?

Heavy, gauge-singlet fermions (right-handed, or sterile neutrinos) can explain the lightness of SM neutrinos,

Current State of HNL Searches

If we discover a Heavy Neutrino...

Is the new particle a Dirac or Majorana Fermion?

Do the new particle's interactions preserve or violate Lepton Number conservation?

* Do these two chains happen with equal probability?

Heavy Neutrino Decay

Next-Generation: DUNE

For sufficient combinations of Heavy Neutrino mass & mixing, not only can the DUNE Near Detector discover the particle, it can determine whether it's a Dirac or Majorana fermion via its fully-charged decays.

What if we're not lucky?

* If a heavy fermion is lighter than the pion, there are no fully-visible (aka no neutrinos) final states where the lepton number is identifiable.

(final state could include a pion instead of a photon, or a charged lepton pair)

There's still hope in Dirac vs. Majorana separation! Measure the distribution of outgoing photons.

Two-Body Decays

From CPT arguments, if the heavy neutrino is a Majorana fermion, then the decay is isotropic. If it is a Dirac fermion, not necessarily.

$$\frac{d\Gamma}{d\cos\theta} = \frac{\Gamma}{2} \left(1 + \alpha\cos\theta\right)$$

Boson	γ	$ \pi^0 $	$ ho^0$	Z^0	H^0
α	$\frac{2\Im(\mu d^*)}{ \mu ^2+ d ^2}$	1	$rac{m_4^2{-}2m_{ ho}^2}{m_4^2{+}2m_{ ho}^2}$	$\frac{m_4^2 \!-\! 2m_Z^2}{m_4^2 \!+\! 2m_Z^2}$	1

Extending to Three-Body Decays

Using similar CPT arguments, we demonstrated that, if N is a Majorana fermion, its decays are forward/backward symmetric if either of the following are true:

- * The final-state charged leptons are identical (e.g. electron/positron pair).
- The detection mechanism is charge-blind (and final states like electron/antimuon and muon/ positron must be summed over).

Considered the most generic four-fermion operators for the decay (including interference):

$$\mathcal{M}_1 = G_{NL} \left[\overline{u}_{\nu} \Gamma_N P_S u_N \right] \left[\overline{u}_{\alpha} \Gamma_L v_{\beta} \right]$$

How large can forward/backward asymmetry be?

To be a useful handle for Dirac/Majorana fermion separation, we want Dirac fermions to exhibit large, measurable asymmetries.

* Black lines: prediction if the decay is mediated purely via off-shell W- and/or Z-bosons

Is this feasible?

Envision a post-discovery experiment near a meson decay-atrest source: how many signal events do we need to see to differentiate the null hypothesis (N is a Dirac fermion) from the alternate hypothesis (N is a Majorana fermion)

Depending on particle's mass, polarization, interaction couplings, can be as few as O(80). Even fewer for scalar/pseudoscalar interactions.

Conclusions

- * Heavy, gauge-singlet fermions are a feature of many well-motivated theories of physics beyond the standard model.
 - * A bevy of experiments are currently searching for them, and next-generation experiments are well-equipped to expand upon these searches.
- * In the wake of a potential discovery, many questions will arise, all connected to the interactions of the new particle and what potential symmetries it respects/violates.
- * Upcoming experiments, and more purpose-built post-discovery experiments, can deduce these properties by measuring the distributions of decays of these new fermions.

Thanks!