

Search for heavy neutral lepton production at the NA62 experiment

<u>Marco Mirra</u>

Sezione INFN Napoli

on behalf of NA62 collaboration

PHENO 2021 Symposium

24-26 May 2021, University of Pittsburgh

Heavy neutral leptons (HNL)

The existence of right-handed neutrinos, or heavy neutral leptons (HNL), is hypothesised in many SM extensions. Generic possibility of k sterile neutrinos mass states:

$$\mathbf{v}_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \mathbf{v}_i \qquad (\alpha = e, \mu, \tau)$$

vMSM: minimal extension of the SM able to explain *v* masses, oscillations, baryogenesis and dark matter Three HNLs: $m_1 \sim 10$ keV [DM candidate]; $m_{2,3} \sim 1$ GeV/c². GeV-scale HNLs can be observed via their production and decay.

[Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151]

25/05/2021 M. Mirra

Search for HNL production at NA62 2

HNL production in K^+ decays

Master formula:
$$BR(P^+ \rightarrow l^+ N) = BR(P^+ \rightarrow l^+ \nu) \times \rho_l(m_N) \times |U_{l4}|^2$$

$$\rho_{l}(m_{N}) = \frac{(x+y) - (x-y)^{2}}{x(1-x)^{2}} \lambda^{1/2}(1,x,y)$$

$$x = (m_{l}/m_{P})^{2}, y = (m_{N}/m_{P})^{2},$$

$$\lambda(a,b,c) = a^{2} + b^{2} + c^{2} - 2(ab + bc + ac)$$

$$\boxed{R \ Shrock \ PLB96 \ (1980) \ 1591}$$

$K^+ \rightarrow l^+ N$

- HNL production is enhanced kinematically wrt SM decays (except near kinematic endpoints).
- > Helicity suppression relaxed in the $K^+ \rightarrow e^+$ N case: factor $\sim 10^5$ enhancement

A kaon factory with high-frequency tracking of beam particles, redundant PID, high-efficiency vetoes would be suitable for this search.

NA62: the CERN kaon factory

Kaon physics at CERN:

- Fixed target experiments at CERN SPS
- ✓ Kaon decay-in-flight

Currently in NA62: ~200 participants 29 institutions from 13 countries

Main goal: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement with O(10%) precision

2. 2×10^{18} proton on target in Run1 (2016-2018), data taking will restart in 2021

SPS protons:

400 GeV/c on beryllium target 10¹² POT/sec on spill 3 sec effective spill length

SPS protons:

400 GeV/c on beryllium target 10¹² POT/sec on spill 3 sec effective spill length

Unseparated secondary beam:

75 GeV/c, 1% bite 100 µrad divergence $60 \times 30 \text{ mm}^2$ transverse size $K^+(6\%)/\pi^+(70\%)/p(24\%)$ Beam particle rate: 750 MHz at GTK3

SPS protons:

400 GeV/c on beryllium target 10¹² POT/sec on spill 3 sec effective spill length Unseparated secondary beam: 75 GeV/c, 1% bite 100 µrad divergence $60 \times 30 \text{ mm}^2$ transverse size $K^+(6\%)/\pi^+(70\%)/p(24\%)$ Beam particle rate: 750 MHz at GTK3

Kaon decay region: 60 m long ~5 MHz kaon decays rate Vacuum O(10⁻⁶) mbar

 \checkmark Excellent time resolution: $\mathcal{O}(100 \text{ ps})$ to match beam and daughter particle information

- ✓ **Kinematics:** rejection of main *K* modes 10⁻⁴ via kinematics reconstruction
- ✓ PID capability (RICH+LKr+MUV): 𝒪(10⁻⁸) muon suppression
- ✓ High-efficiency photon veto: 10⁻⁸ rejection of π^0 for E(π^0) > 40 GeV

$K^+ \rightarrow l^+ N$ signal selection

- → Triggers used: $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+ N$ minimum bias (downscaled by 400) for $K^+ \rightarrow \mu^+ N$
- Good downstream track reconstructed by the STRAW spectrometer in acceptance of LKr and MUV3
- > Lepton momentum requirements: $5 < p_e < 30 \text{ GeV/c} 5 < p_{\mu} < 70 \text{ GeV/c}$
- > Upstream track identified by KTAG and GTK matched with the downstream lepton
- > Lepton PID: $0.92 < E_{LKr}/p_e < 1.08$, RICH and MUV3 in veto- $E_{LKr}/p_{\mu} < 0.2$, RICH and MUV3
- > Photon vetoes applied

Final samples

- > Numbers of K^+ decays in fiducial volume: $N_K = (3.52 \pm 0.02) \times 10^{12}$ in e^+ mode; $N_K = (1.14 \pm 0.02) \times 10^{10}$ in μ^+ mode
- > Squared missing mass $m_{miss}^2 = (P_K P_l)^2$ using STRAW and GTK detectors
- > HNL production signal: a spike above continuous missing mass spectrum

25/05/2021 M. Mirra

Search for HNL production at NA62 11

HNL mass resolution

Selection for each HNL mass hypothesis includes a «mass window» condition:

 $|m-m_{HNL}| < 1.5 \sigma_m$

where σ_m is the mass resolution evaluated from simulations. Modelling of the resolution outside the main peak is validated using data and simulated $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay samples studying the resolution of $\Delta m_{3\pi} = \sqrt{(P_K - P_{\pi 1})^2} - \sqrt{(P_{\pi 2} + P_{\pi 3})^2}$

Acceptance and single event sensitivity

- > Standard K_{e2} selection: $p_e < 30$ GeV/c (as in $K_{\pi\nu\nu}$ trigger)
- > Auxiliary K_{e2} ($p_e < 20$ GeV/c): smooth background near the π_{e2} threshold
- ► Definitions: $BR_{SES} = 1/(N_K \times A_N), |U_{l4}|_{SES}^2 = BR_{SES}/[BR(K^+ \rightarrow l^+\nu)\rho_l(m_N)]$

Search for HNL production at NA62 13

Results from NA62 Run1 data

- Upper limit on the number of signal events at 90% CL using CLs technique with NA62 Run1 data
- In the e⁺ case, maximum local significance of 3.6 for m_N=346 MeV/c². Accounting for look-elsewhere effect, global significance is 2.2
- No statistically significant excess is detected in μ^+ mode

HNL production searches: summary

Limits from HNL production searches:

- ✓ Improvements up to two orders of magnitudes
- ✓ For |U_{e4}|², BBN-allowed range excluded up to 340 MeV/c²
- ✓ For $|U_{\mu4}|^2$, approached E949 sensitivity and extended search to 383 MeV/c²

Conclusions

- ✓ NA62 experiment at CERN collected a sample of ~ 6 × 10¹² K⁺ decays in flight during Run 1 in 2016-2018.
- ✓ HNL production searches ($K^+ \rightarrow l^+ N$) with the 2016-2018 data set:
 - *O*(10⁻⁹) limits on |U_{e4}|², full data set [PLB 807 (2020) 135599]
 - $\mathcal{O}(10^{-8})$ limits on $|U_{\mu4}|^2$, full data set [PLB 816 (2021) 136259]
- ✓ With slight modifications to the $K^+ \to \mu^+ N$ analysis, a first search is conducted for $K^+ \to \mu^+ \nu X$ with X a scalar or vector mediator in the mass range 10-370 MeV/c²: no signal has been detected and upper limits are obtained at 90% CL on the BR range from $\mathcal{O}(10^{-5})$ for low m_X values to $\mathcal{O}(10^{-7})$ for high m_X values. Also a 90% CL upper limit at 1.0×10^{-6} on the BR($K^+ \to \mu^+ \nu \nu \overline{\nu}$) is obtained.
- ✓ NA62 sensitivity to |U₁₄|² to be improved with larger data sets (new data taking period 2021-2024)