Phenomenology of the minimal inverseseesaw model with Abelian flavour symmetries

Henrique B. Câmara

Departamento de Física and CFTP, Instituto Superior Técnico, Lisboa

Based on work in collaboration with R.G. Felipe & F.R. Joaquim

arXiv:2012.04557[hep-ph]

DOI:10.1007/JHEP05(2021)021

Contact e-mail: henrique.b.camara@tecnico.ulisboa.pt

Phenomenology 2021 Symposium (PHENO 2021), 25th May 2021

Inverse-seesaw (ISS) mechanism

 $\mathrm{ISS}(n_R,n_s)$ Mohapatra; Mohapatra & Valle'86; Gonzalez-Garcia & Valle'89

▶ Sterile neutrino fields: u_{Ri} $(i = 1, ..., n_R), \ s_i \ (i = 1, ..., n_s)$

 $-\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \,\mathbf{M}_\ell \,e_R + \overline{\nu_L} \,\mathbf{M}_D \nu_R + \overline{\nu_R} \,\mathbf{M}_R s + \frac{1}{2} \overline{s^c} \,\mathbf{M}_s s + \text{H.c.}$

> Effective neutrino mass matrix $(m_D, \mu_s \ll M)$:

$$\mathbf{M}_{\text{eff}} = -\mathbf{M}_D^* (\mathbf{M}_R^T)^{-1} \mathbf{M}_s \mathbf{M}_R^{-1} \mathbf{M}_D^{\dagger} \longrightarrow m_{\nu} \sim \mu_s \frac{m_D^2}{M^2}$$

Active-sterile mixing:

$$\mathbf{U}_{\mathrm{Hl}} \simeq \mathbf{V}_{L}^{\dagger} \left(0, \ \mathbf{M}_{D} (\mathbf{M}_{R}^{\dagger})^{-1} \right) \mathbf{U}_{s} \longrightarrow U_{\mathrm{Hl}} \sim \frac{m_{D}}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_{s}}}$$

Type-I seesaw:
$$m_{\nu} \sim \frac{m_D^2}{M} \ , \ U_{\rm Hl} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{\nu}}{M}}$$

$$(3 + n_R + n_s) \times (3 + n_R + n_s)$$
$$\implies \mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^\dagger & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}$$

- The ISS is a low-scale neutrino mass generation mechanism
- ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile neutrino mixing

Minimal Inverse Seesaw:

$$ISS(n_R, n_s) \longrightarrow ISS(2, 2)$$

One massless neutrino

0

- Neutrino data can be accommodated
- > Still 17 parameters (in the M_s diagonal basis)

Abada & Lucente'14

Neutrino oscillation data

<u>Minimal Inverse Seesaw</u> <u>ISS(2,2):</u>

17 parameters vs 7 observables $heta_{12} \ , \ heta_{23} \ , \ heta_{13} \ , \Delta m^2_{21,31} \ , \ \delta \ , \ lpha$

Best Fit $\pm 1\sigma$	3σ range
34.3 ± 1.0	$31.4 \rightarrow 37.4$
$48.79_{-1.25}^{+0.93}$	$41.63 \rightarrow 51.32$
$48.79^{+1.04}_{-1.30}$	$41.88 \rightarrow 51.30$
$8.58\substack{+0.11\\-0.15}$	$8.16 \rightarrow 8.94$
$8.63_{-0.15}^{+0.11}$	$8.21 \rightarrow 8.99$
216^{+41}_{-25}	$144 \rightarrow 360$
277^{+23}_{-24}	$205 \rightarrow 342$
$7.50\substack{+0.22\\-0.20}$	$6.94 \rightarrow 8.14$
$2.56\substack{+0.03\\-0.04}$	$2.46 \rightarrow 2.65$
2.46 ± 0.03	$2.37 \rightarrow 2.55$
	$\begin{array}{c} 34.3\pm1.0\\ 48.79^{+0.93}_{-1.25}\\ 48.79^{+1.04}_{-1.30}\\ 8.58^{+0.11}_{-0.15}\\ 8.63^{+0.11}_{-0.15}\\ 216^{+41}_{-25}\\ 277^{+23}_{-24}\\ 7.50^{+0.22}_{-0.20}\\ 2.56^{+0.03}_{-0.04}\\ \end{array}$

de Salas et. al, 20; Capozzi et. al'20; Esteban et. al'20

Abelian flavour symmetries:

 All mass terms generated dynamically

Mass matrices

 $\mathbf{M}_\ell\,,\,\mathbf{M}_D$ $\mathbf{M}_R\,,\,\mathbf{M}_s$

$$\psi_{\alpha}$$

$$\psi_{\beta}$$

$$(q_{\alpha} + q_{\beta} + q_{S}) = 0$$

- Impose texture zeros in the mass matrices reducing the number of parameters
- CPV from vacuum phases (SCPV)

$$\psi_{\alpha} \qquad \langle \phi_{a}^{0} \rangle = v_{a} e^{i\theta_{a}} \\ \langle S_{a} \rangle = u_{a} e^{i\xi_{a}}$$

Scalar content and Yukawa Lagrangian

- Need to add a second Higgs doublet to be able to realise the chargedlepton mass matrix textures.
- > Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2}e^{i\theta_{1,2}} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}, \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2}e^{i\xi_{1,2}} + \rho_{3,4} + i\eta_{3,4} \right)$$

$$\begin{aligned} & -\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R \\ & + \frac{1}{2} \, \overline{s^c} \left(\mathbf{Y}_s^1 S_1 + \mathbf{Y}_s^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_R^1 S_2 + \mathbf{Y}_R^2 S_2^* \right) s + \text{H.c.} \end{aligned}$$

<u>Scalar potential</u>

 $V(\Phi_a, S_a) = V_{\text{sym.}} + V_{\text{soft}}(\Phi_a, S_a)$

 $V_{\text{soft}}(\Phi_a, S_a) = \mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mu_3^2 S_1^2 + \mu_4 |S_1|^2 S_1 + \mu_5 |S_2|^2 S_2 + \text{H.c.}$

> SCPV is achieved by: $\theta, \xi_2 = 0, \xi_1 = \arctan\left(\frac{\sqrt{32\mu_3^4 - \mu_4^2 u_1^2}}{\mu_4 u_1}\right)$

Abelian flavour symmetries

Maximally-restrictive texture sets compatible with neutrino oscillation data that are realisable by Abelian symmetries:

		$\mathbf{L}_{\mathbf{F}}$ \mathbf{C}		$\circ (-)_{\Gamma}, n$	-, -	
		$(5_{1,I}^{\ell}, T_{45})$	$(4_3^\ell, T_{124})$	$(4_3^\ell, T_{456})$	$(4_3^\ell, T_{136,I})$	$(4_3^\ell, T_{146,I})$
Fields	U(1)	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_4 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_4 \times \mathrm{U}(1)_F$
Φ_1	0	(1, 1)	(0, -5)	(1, 1)	(1,2)	(0, 1)
Φ_2	0	(0, -1)	(1, -3)	(0, -1)	(0,1)	(3,0)
S_1	0	(0,2)	(0,-2)	(0,-2)	(0, -2)	(0, -2)
S_2	1	(0,0)	(0,0)	(1, 0)	(0,0)	(0,0)
ℓ_{e_L}	1	(1, 0)	(0,0)	(0,0)	(2,0)	(2,0)
ℓ_{μ_L}	1	(0,2)	(1, 2)	(1,-2)	(1,-1)	(1, -1)
$\ell_{ au_L}$	1	(0,-2)	(0,4)	(0, -4)	(0, -2)	(0, -2)
e_R	1	(1, -3)	(0,9)	(1, -5)	(3, -4)	(0, -3)
μ_R	1	(0,3)	(1,7)	(0, -3)	(0, -3)	(1, -2)
$ au_R$	1	(0, -1)	(0,5)	(1,-1)	(1,-2)	(2, -1)
$ u_{R_1}$	1	(0,1)	(0, -1)	(0, -1)	(0, -1)	(0, -1)
$ u_{R_2}$	1	(1,-1)	(1,1)	(1, 1)	(2,1)	(2,1)
s_1	0	(1, -1)	(1,1)	(0,1)	(2, 1)	(2,1)
s_2	0	(0,1)	(0, -1)	(1, -1)	(0, -1)	(0, -1)

 $\mathbf{G}_{\mathrm{F}} = \mathrm{U}(1) \times \mathbb{Z}_n \times \mathrm{U}(1)_{\mathrm{F}}, \ n = 2, 4$

Abelian flavour symmetries

ONLY INTERESTING CASE

		$(5_{1,I}^{\ell}, T_{45})$
Fields	U(1)	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$
Φ_1	0	(1,1)
Φ_2	0	(0, -1)
S_1	0	(0,2)
S_2	1	(0,0)
ℓ_{e_L}	1	(1, 0)
ℓ_{μ_L}	1	(0,2)
$\ell_{ au_L}$	1	(0, -2)
e_R	1	(1, -3)
μ_R	1	(0,3)
$ au_R$	1	(0, -1)
$ u_{R_1}$	1	(0,1)
$ u_{R_2}$	1	(1, -1)
s_1	0	(1, -1)
s_2	0	(0,1)

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R + \frac{1}{2} \overline{s^c} \left(\mathbf{Y}_s^1 S_1 + \mathbf{Y}_s^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_R^1 S_2 + \mathbf{Y}_R^2 S_2^* \right) s + \text{H.c.}$$

Mass matrices Yukawa decompositions

\mathbf{M}_ℓ	\mathbf{Y}^1_ℓ	\mathbf{Y}_ℓ^2	\mathbf{M}_R \mathbf{Y}_R
$5_{1,\mathrm{I}}^{\ell}$	$\begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$	$T_{14} \begin{pmatrix} 0 & \times \\ \times & 0 \end{pmatrix}$
\mathbf{M}_D	\mathbf{Y}_D^1	\mathbf{Y}_D^2	\mathbf{M}_s \mathbf{Y}_s^1 \mathbf{Y}_s^2
T_{45}	$\begin{pmatrix} \times & 0 \\ 0 & 0 \\ 0 & \times \end{pmatrix}$	$\begin{pmatrix} 0 & \times \\ \times & 0 \\ 0 & 0 \end{pmatrix}$	$\mathbf{T}_{23} \begin{pmatrix} \times & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \times \end{pmatrix}$

A common origin for Leptonic CPV

Parameterisation of the charged lepton-mass matrix:

$$5_1^{\ell}: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & m_{\ell_1}^2 & 0 \\ a_2 & 0 & a_4 \end{pmatrix} , \quad \mathbf{H}_{\ell} = \begin{pmatrix} a_1^2 & 0 & a_1 a_4 \\ 0 & a_3^2 & 0 \\ a_1 a_4 & 0 & a_2^2 + a_4^2 \end{pmatrix} , \quad \mathbf{V}_L' = \begin{pmatrix} c_L & 0 & s_L \\ 0 & 1 & 0 \\ -s_L & 0 & c_L \end{pmatrix} \quad \theta_L$$

$$5_1^e: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12}, \quad 5_1^\mu: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}, \quad 5_1^\tau: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23},$$

$$NO_{e,\mu,\tau}$$
, $IO_{e,\mu,\tau} \longrightarrow 6$ distinct cases to be analysed

Real Yukawa couplings (CP is conserved at the Lagrangian level)
$$\mathbf{Y}_{D}^{1} = \begin{pmatrix} b_{1} & 0 \\ 0 & 0 \\ 0 & b_{2} \end{pmatrix}, \ \mathbf{Y}_{D}^{2} = \begin{pmatrix} 0 & b_{3} \\ b_{4} & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{R} = \begin{pmatrix} 0 & d_{2} \\ d_{1} & 0 \end{pmatrix}, \ \mathbf{Y}_{s}^{1} = \begin{pmatrix} f_{2} & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_{s}^{2} = \begin{pmatrix} 0 & 0 \\ 0 & f_{1} \end{pmatrix}$$

VEV configuration:

Correlation between low-energy observables

> Effective neutrino mass matrix: $\mathbf{V}_L^{\dagger} \mathbf{M}_{eff} \mathbf{V}_L$

$$\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & ze^{2i\xi} \\ y & x & 0 \\ ze^{2i\xi} & 0 & we^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos\theta_L & 0 & \sin\theta_L \\ 0 & 1 & 0 \\ -\sin\theta_L & 0 & \cos\theta_L \end{pmatrix} \begin{bmatrix} 5_1^e : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5_1^\tau : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{bmatrix}$$

$$z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \ x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}$$

The effective light neutrino mass matrix is written solely in terms of 6 effective parameters:

$$(x, y, z, w, \theta_L, \xi) \longrightarrow \mathcal{O}_i \equiv (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{ij}, \delta, \alpha)$$

$$NO: M_{ij} = \left[\mathbf{U}'^* \operatorname{diag} \left(0, \sqrt{\Delta m_{21}^2}, \sqrt{\Delta m_{31}^2} \right) \mathbf{U}'^\dagger \right]_{ij}$$

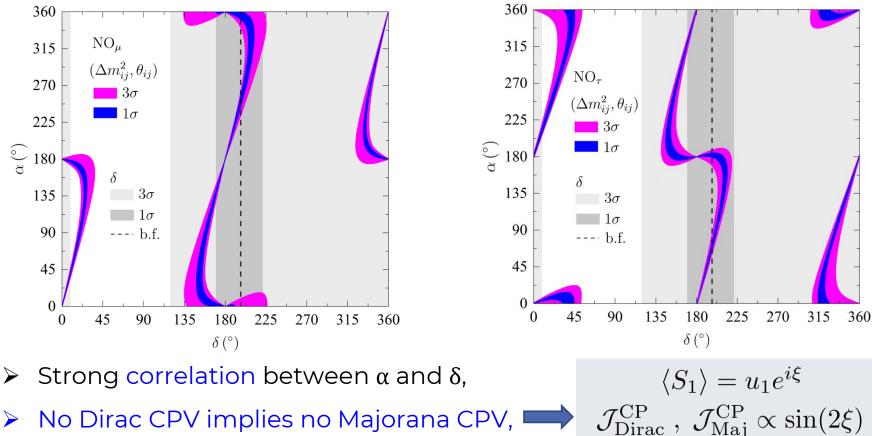
$$IO: M_{ij} = \left[\mathbf{U}'^* \operatorname{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2} + \Delta m_{31}^2, 0 \right) \mathbf{U}'^\dagger \right]_{ij}$$

$$D_{ij} = M_{ii}M_{jj} - M_{ij}^2$$

$$D_{ij} = M_{ii}M_{jj} - M_{ij}^2$$

Low operav relations:

Leptonic CP violation



No Dirac CPV implies no Majorana CPV, ¹ \succ

as in Branco, Felipe, FRJ, Serôdio (2012)

- A measurement of δ in the intervals [45°, 135°] and [225°, 315°] would exclude the NO_{μ} and NO_{τ} cases,
- $\succ \beta \beta_{0\nu}$ analysis done in the paper (no time to discuss here).

Heavy-light mixing relations

 $\begin{array}{l} & \text{Charged and} \\ \text{neutral current} \\ \text{interactions} \end{array} \quad \mathcal{L}_{W^{\pm}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{n_{f}} \mathbf{B}_{\alpha j} \ \overline{e_{\alpha}} \gamma^{\mu} P_{L} \nu_{j} + \text{H.c.} \end{array} \quad \begin{array}{l} W^{\pm} \qquad \nu_{j} \\ e_{\alpha} \\ e_{\alpha} \\ e_{\alpha} \end{array} \\ \\ & \mathcal{L}_{Z} = \frac{g}{4c_{W}} Z_{\mu} \sum_{i,j=1}^{n_{f}} \ \overline{\nu_{i}} \gamma^{\mu} \left(\mathcal{C}_{ij} P_{L} - \mathcal{C}_{ij}^{*} P_{R} \right) \nu_{j} , \ \mathcal{C}_{ij} = \sum_{\alpha=1}^{3} \mathbf{B}_{\alpha i}^{*} \mathbf{B}_{\alpha j} \qquad \begin{array}{l} W^{\pm} \\ \mathcal{V}_{j} \\ \mathcal{V}_{j} \end{array}$

$$\frac{\mathbf{B}_{e4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{e5}}{\mathbf{B}_{\mu5}} \simeq \frac{x}{yc_L} , \ \frac{\mathbf{B}_{\tau4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{\tau5}}{\mathbf{B}_{\mu5}} \simeq \tan \theta_L , \ \frac{\mathbf{B}_{\mu6}}{\mathbf{B}_{\tau6}} \simeq \frac{\mathbf{B}_{\mu7}}{\mathbf{B}_{\tau7}} \simeq \frac{z - w \tan \theta_L}{w + z \tan \theta_L} , \ \mathbf{B}_{e6} \simeq \mathbf{B}_{e7} \simeq 0$$

Numerical estimates

	NO_{e}	NO_{μ}	NO_{τ}	IO_e	IO_{μ}	IO_{τ}
$\mathbf{B}_{e4}/\mathbf{B}_{\mu4}\simeq\mathbf{B}_{e5}/\mathbf{B}_{\mu5}$	0.21	0.17	0.17	2.73	0.21	0.41
$\mathbf{B}_{ au 4}/\mathbf{B}_{\mu 4} \simeq \mathbf{B}_{ au 5}/\mathbf{B}_{\mu 5}$	0.27	0.88	0.87	0.51	1.09	1.24
$\mathbf{B}_{ au 4}/\mathbf{B}_{e4} \simeq \mathbf{B}_{ au 5}/\mathbf{B}_{e5}$	1.27	5.07	5.24	0.19	5.33	5.02
$\mathbf{B}_{e6}/\mathbf{B}_{\mu 6} \simeq \mathbf{B}_{e7}/\mathbf{B}_{\mu 7}$	0	_	0.36	0	_	4.96
$\mathbf{B}_{ au 6} / \mathbf{B}_{\mu 6} \simeq \mathbf{B}_{ au 7} / \mathbf{B}_{\mu 7}$	0.61	_	0	1.14	_	0
$\mathbf{B}_{ au 6} / \mathbf{B}_{e6} \simeq \mathbf{B}_{ au 7} / \mathbf{B}_{e7}$	_	1.64	0	_	0.23	0

> The
$$\mathbf{B}_{\alpha i}$$
 ($\alpha = e, \mu, \tau$) ($i = 4, ..., 7$) are related to each other;

- The relations are expressed solely in terms of the low-energy neutrino observables;
- Due to the flavour symmetries the heavy-light mixing parameters are not independent.

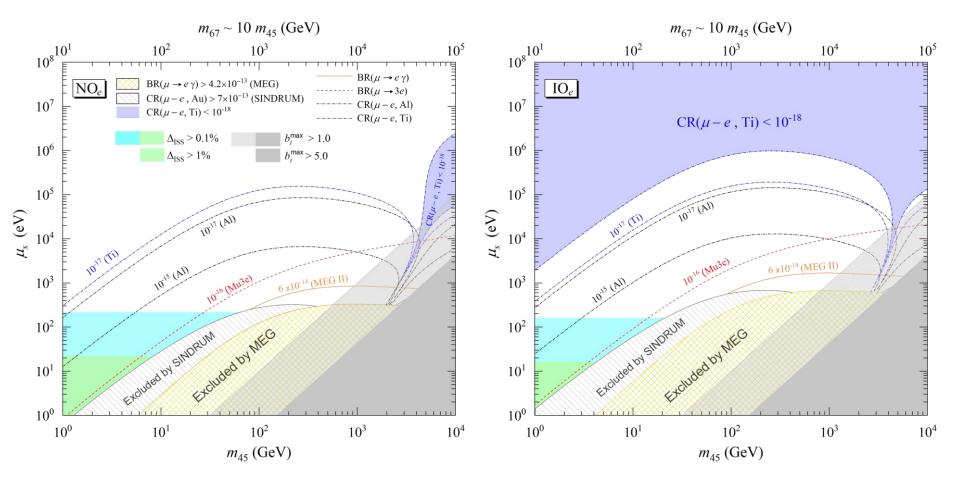
Relations among cLFV processes (no time to discuss here)

Charged lepton flavour violation (cLFV)

cLFV process	Present limit $(90\% \text{ CL})$	Future sensitivity
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \text{ (MEG)}$	$6 \times 10^{-14} \text{ (MEG II)}$
$BR(\tau \to e\gamma)$	3.3×10^{-8} (BaBar)	3×10^{-9} (Belle II)
${ m BR}(au o \mu \gamma)$	$4.4 \times 10^{-8} \text{ (BaBar)}$	10^{-9} (Belle II)
$BR(\mu^- \to e^- e^+ e^-)$	1.0×10^{-12} (SINDRUM)	10^{-16} (Mu3e)
$\mathrm{BR}(\tau^- \to e^- e^+ e^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
${\rm BR}(\tau^- \to e^- \mu^+ \mu^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to e^+ \mu^- \mu^-)$	1.7×10^{-8} (Belle)	3×10^{-10} (Belle II)
${\rm BR}(\tau^- \to \mu^- e^+ e^-)$	1.8×10^{-8} (Belle)	3×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to \mu^+ e^- e^-)$	1.5×10^{-8} (Belle)	3×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to \mu^- \mu^+ \mu^-)$	2.1×10^{-8} (Belle)	4×10^{-10} (Belle II)
$CR(\mu - e, Al)$	_	$3 \times 10^{-17} $ (Mu2e)
		$10^{-15} - 10^{-17}$ (COMET I-II)
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II)	10^{-18} (PRISM/PRIME)
$CR(\mu - e, Au)$	7×10^{-13} (SINDRUM II)	_
$CR(\mu - e, Pb)$	4.6×10^{-11} (SINDRUM II)	_

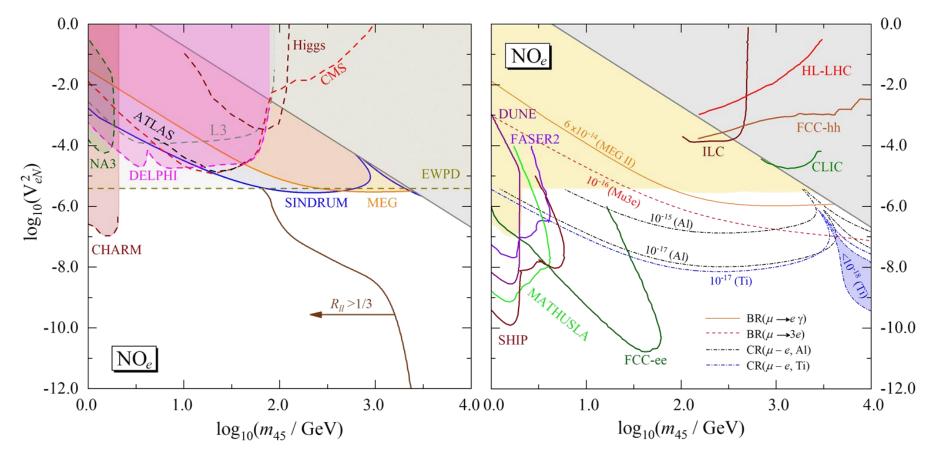
> Muon cLFV: strongest current constraints and future lowest sensitivities

cLFV in the ISS(2,2) with Abelian symmetries



- For NO, almost the whole parameter space will be scrutinized by future μ–e conversion experiments (Mu2e, COMET, PRISM/PRIME);
- For IO, the prospects are less optimistic.

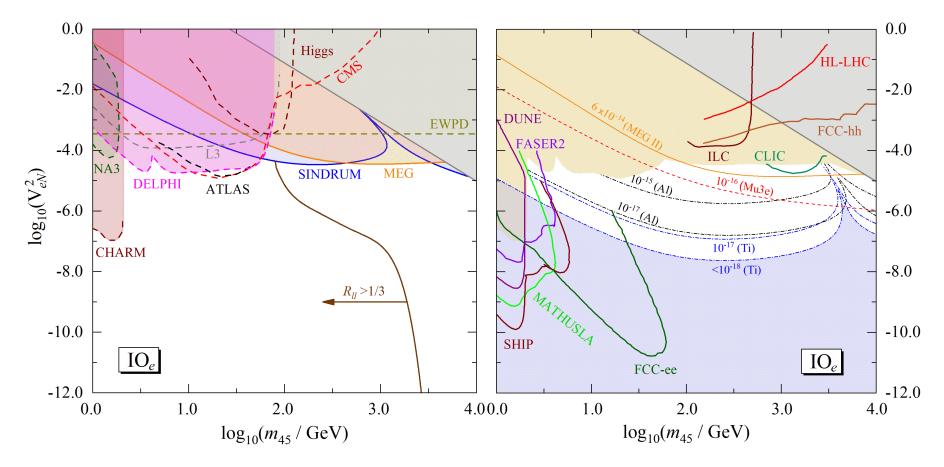
Constraints on heavy sterile neutrinos



> Current data implies an upper bound $V_{eN}^2 \sim 10^{-6} - 10^{-5}$;

Future probes will be sensitive to much smaller mixings. Indirect LFV experiments fully complementary to other direct searches.

Constraints on heavy sterile neutrinos



EWPD is less constraining in the IO case;

> Future CLV probes will be sensitive to $V_{eN}^2 \sim 10^{-7}$.

Conclusion

- Comprehensive study of the minimal inverse seesaw model constrained by Abelian flavour symmetries with all mass terms generated via SSB;
- Majorana and Dirac-type CP violation are related;
- Relations among LFV parameters in our framework provide a very constrained setup for phenomenological studies;
- Constraining power of cLFV processes in the model's parameter space;
- Alternative probes such as beam-dump, hadron-collider, linearcollider, displaced-vertex experiments as well as EWPD.

Analysed in paper: Impact of radiative correction on neutrino masses, neutrinoless double beta decay, relations among tau and muon LFV decays, ...

