

Celeste Keith
University of Chicago

Background

- INTEGRAL has detected an excess of 511 keV photons in the inner Milky Way
 - $\circ [1.07 \pm 0.03] \times 10^{-3} \text{ photons cm}^{-2} \text{ s}^{-1}$
 - $\circ~$ Translates to ${\sim}2\times10^{43}$ positrons per second
- Proposed explanations
 - Type 1a supernovae
 - Gamma ray bursts
 - Microquasars
 - Low mass X ray binaries
 - Neutron star mergers
 - Annihilating, decaying, or upscattering dark matter
 - Other exotic scenarios

Our Proposal

- Excess positrons produced through Hawking evaporation of a population of primordial black holes
- We can explain this flux of positrons with these black holes, in a mass range $[1-4] \times 10^{16}$ grams
- Utilize constraints from INTEGRAL, COMPTEL and Voyager 1

Outline

- Identify the constraints from INTEGRAL, COMPTEL, and Voyager
- Calculate gamma ray signal from black holes
- Find the allowed parameter space
- Derive number density of black holes based on the allowed parameter space
- Explore possibility of the detection of this signal

Hawking Evaporation

- Black holes radiate all particle species lighter than or comparable to their temperature
- Radiation causes the black holes to evaporate at a rate
- For $m_{BH} > 5 \times 10^{14}$ g, BH has a lifetime greater than age of universe

$$T_{
m BH} = rac{M_{
m Pl}^2}{8\pi m_{
m BH}} pprox 1.05 \,{
m MeV} \left(rac{10^{16}\,{
m g}}{m_{
m BH}}
ight)$$

$$\frac{dm_{\rm BH}}{dt} = -\frac{\mathcal{G}g_{*,H}(m_{\rm BH})M_{\rm Pl}^2}{30720\pi m_{\rm BH}^2}$$

$$\approx -8.2 \times 10^{-7} \,\mathrm{g/s} \left(\frac{g_{*,H}}{10.92}\right) \left(\frac{10^{16} \,\mathrm{g}}{m_{\rm BH}}\right)^2$$

Hawking Evaporation

The spectrum of Hawking radiation from BHs looks like:

$$rac{dN}{dE}(m_{
m BH},E) = rac{1}{2\pi^2} rac{E^2 \sigma(m_{
m BH},E)}{e^{E/T} \pm 1}$$

• Absorption cross section σ depends on the spin of the particle radiated

Identifying 511 keV Parameter Space

- Calculate the flux and spatial distribution of the injected positrons and compare to 511 keV data
- Not every positron emitted leads to a 511 keV photon
 - 0.55 photons per positron

$$\begin{split} F_{511}(\Delta\Omega) &= \frac{L_{511}(m_{\rm BH})}{4\pi} \int_{\Delta\Omega} \int_{los} n_{\rm BH}(l,\Omega) \, dl \, d\Omega, \\ &\approx \frac{0.55 \, L_{e^+}(m_{\rm BH}) \, f_{\rm BH}}{4\pi m_{\rm BH}} \int_{\Delta\Omega} \int_{los} \rho_{\rm DM}(l,\Omega) \, dl \, d\Omega \end{split}$$

$$e^{-} + e^{+} \rightarrow \gamma + \gamma$$
2 - 511 keV
photons

3 photons $E_{\gamma} < 511 \text{ keV}$

2 photons $E_{\nu} = 511 \text{ keV}$

Identifying 511 keV Parameter Space

- Adopt gNFW profile
- Local DM density is 0.4 GeV cm⁻³

$$\rho_{\rm DM} = \frac{\rho_0}{(r/R_s)^{\gamma} \left[1 + (r/R_s)\right]^{3-\gamma}}$$

Bouchet et al, arXiv:1007.4753

Best fit to 511 keV data

- Our best fit of gamma corresponds to 2.2 ± 0.6 (at 2σ)
- We choose to focus on the lower end of this range
- Account for inflight annihilation and final state radiation

$$egin{aligned} F_{\gamma}(\Delta\Omega) &= rac{dN_{\gamma}^{
m tot}}{dE_{\gamma}} rac{1}{4\pi} \int_{\Delta\Omega} \int_{los} n_{
m BH}(l,\Omega) \, dl \, d\Omega, \ &= rac{dN_{\gamma}^{
m tot}}{dE_{\gamma}} rac{f_{
m BH}}{4\pi m_{
m BH}} \int_{\Delta\Omega} \int_{los}
ho_{
m DM}(l,\Omega) \, dl \, d\Omega \end{aligned}$$

Final Constraints

- Vary f_{BH} to minimize χ^2 to find best fit to INTEGRAL data
 - For COMPTEL data, simply do not exceed COMPTEL error bars with choice of f_{BH}
 - Combine all energy bin constraints into strongest constraints over INTEGRAL and COMPTEL

Final Results

- $m_{BH} \sim [1-4] \times 10^{16}$ grams
- $\gamma \sim 1.6 1.8$
 - 2 is ruled out by INTEGRAL/COMPTEL/Voyager
 - Lower than 1.6 is disfavored by 511 keV signal
- $f_{DM} \sim 0.0001 0.004$
- Also apply constraints from Voyager 1 (Boudaud and Cirelli, arXiv: 1807.03075)

Implications of This Result

- Local DM density: 0.4 GeV/cm³
- Closest black hole ~ 10 AU away
- Solar System has several hundred BHs in it at any moment
- Over 10 years, closest approach several AU

$$n_{\rm BH}^{\rm local} = \frac{f_{\rm BH} \rho_{\rm DM}^{\rm local}}{m_{\rm BH}}$$

$$\simeq 1.0 \times 10^{12} \, \rm pc^{-3} \times \left(\frac{f_{\rm BH}}{10^{-3}}\right) \left(\frac{2 \times 10^{16} \, \rm g}{m_{\rm BH}}\right)$$

$$\simeq 1.2 \times 10^{-4} \, \rm AU^{-3} \times \left(\frac{f_{\rm BH}}{10^{-3}}\right) \left(\frac{2 \times 10^{16} \, \rm g}{m_{\rm BH}}\right)$$

Prospects for Detection

- Future telescopes (AMEGO & e-Astrogam) can detect these?
 - To have enough flux to be detected, BH would have to be ~1AU away
 - High proper motion would complicate detection
- Possibly can use these telescopes to detect and characterize the diffuse gamma-ray emission generated by BHs in the Milky Way's inner halo

Conclusion

- If a population of primordial black holes exist, they can explain the 511 keV excess from the GC within:
 - $m_{BH} \sim [1-4] \times 10^{16}$ grams
 - $f_{BH} \sim 0.0001 0.004$
 - $n_{BH}^{local} \sim 10^{12} \ {\rm pc}^{-3}$
 - $\gamma \sim 1.6 1.8$
 - Difficulty testing due to the size and proper motion of local BHs
 - AMEGO and e-ASTROGAM are expected to be able to test this scenario