Probing dark matter interactions below the neutrino floor with Population III stars CI, C. Levy, J. Pilawa, S. Zhang <u>2009.11478</u> and <u>2009.11474</u>

Cosmin lie cilie@colgate.edu (Colgate University)

The team:

Caleb Levy (Colgate '23)

PHENO21

Jacob Pilawa (UC Berkeley)

Saiyang Zhang (UT Austin)

Astrophysical Objects as DM Probes

Moon

Neutron Stars Exoplanets White Dwarfs PHENO21 DM bounds from POPIII stars Cosmin Ilie <u>cilie@colgate.edu</u>

The First Stars May26

The first Stars, bird's-eye view

Figure From: Bromm et al. Nature 459 (2009)

PHENO21

- The form at high redshift (z~10-40) from pristine BBN H and He gas
- In very DM rich environments, at the center lacksquareof DM microhalos
- Usually in isolation, or with few companions ightarrow
- They can grow as massive as $1000M_{\odot}$ (PopIII stars powered by H fusion)
- DM annihilations can lead to formation of ightarrowSupermassive Dark Stars (SMDS) $(M_{SMDS} \sim 10^5 M_{\odot})$ powered solely by DM)

Observational Status

Monthly Notices

ROYAL ASTRONOMICAL SOCIETY

doi:10.1093/mnrasl/slaa041

MNRAS 494, L81–L85 (2020) Advance Access publication 2020 March 13

Candidate Population III stellar complex at z = 6.629 in the MUSE Deep Lensed Field

E. Vanzella,^{1*} M. Meneghetti[®],^{1*} G. B. Caminha,² M. Castellano,³ F. Calura[®],^{1*} P. Rosati,^{1,4} C. Grillo,⁵ M. Dijkstra, M. Gronke[®],⁶ E. Sani,⁷ A. Mercurio,⁸ P. Tozzi,⁹ M. Nonino,¹⁰ S. Cristiani,¹⁰ M. Mignoli,¹ L. Pentericci,³ R. Gilli,¹ T. Treu,¹¹ K. Caputi,² G. Cupani,¹⁰ A. Fontana,³ A. Grazian¹² and I. Balestra^{10,13}

Fig. From Vanzella et al. MNRAS Lett. 294 (2020)

PHENO21

Observational Prospects

JWST

PHENO21

DM bounds from POPIII stars **Cosmin lie** <u>cilie@colgate.edu</u>

Roman (WFIRST)

DM Densities (Adiabatic Compression)

Blumenthal AC formalism vs Abel et al Science (2002) Simulation

PHENO21

Dark Matter Copture

Dra porticle gets deflected towards onother nucleus

Star shinks Brighter

Bounds from imposing sub-Eddington Luminosity: $L_{DM}(M_{\star}, R_{\star}; DM \ params) \leq L_{Edd}(M_{\star}) - L_{nuc}(M_{\star})$

PHENO21

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

Upper Bounds on $\sigma - m_X$, $\rho_X(t = 0) = 10^{13} - 10^{16} \text{ GeV cm}^{-3}$

How about Sub GeV annihilating DM that can deposit energy inside a star?

COSIMP DM

PHENO21 DM bounds from POPIII stars Cosmin lie <u>cilie@colgate.edu</u>

$$\sigma_{CoSIMP} v^2 \rangle \sim 10^{12} \left(\frac{\text{MeV}}{m_X}\right)^3 \left(\frac{0.12}{\Omega_X h^2}\right)^2 \text{ GeV}^-$$

SD Bounds on Co-SIMP sub GeV DM

PHENO21

SI Bounds on Co-SIMP sub GeV DM

PHENO21

Number of captured DM particles inside the star

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

PHENO21

$$C_{A} \cdot N_{x}^{2} - E \cdot N_{x}$$

$$J$$

$$Annihildian Total Evaporation
$$Rote (T_{A}) Rote$$

$$Fonh(\frac{x t}{2eq})$$

$$\chi + \frac{1}{2}E \cdot 2eq touh(\frac{k t}{2eq})$$

$$\chi = \sqrt{1 + E^{2} 2eq^{2}/4}$$$$

DM Luminosity

$L_{DM} = f \cdot \Gamma_A \cdot m_X$

PHENO21

DM bounds from POPIII stars Cosmin lie cilie@colgate.edu

DM Luminosity

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

Fraction of annihilation energy deposited inside the star, i.e. not lost to neutrinos. We assume f=1 but our results scale linearly with f

DM Luminosity

PHENO21

 $L_{DM} = f \cdot \Gamma_A \cdot m_X$ $\Gamma_A = C_A N_X^2$ Capture/Annihi/Evap Equil. $t \gg \tau_{eq} / \kappa$

$$C_{tot} = \sum_{N=1}^{\infty} C_N = \sqrt{24\pi} G M_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_N \bar{v}$$

J. Bramante et al PRD 96 (2017); CI, J. Pilawa, S. Zhang PRD102 (2020)

PHENO21 DM bounds from POPIII stars Cosmin lie <u>cilie@colgate.edu</u>

$p_N(\tau) \left(1 - \left(1 + \frac{2A_N^2 \bar{v}^2}{3v_{esc}^2} \right) e^{-A_N^2} \right)$

$$C_{tot} = \sum_{N=1}^{\infty} C_N = \sqrt{24\pi} G M_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_{\star} R_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_{\star} R_{\star}$$

PHENO21

$p_N(\tau) \left[1 - \left(1 + \frac{2A_N^2 \bar{v}^2}{3v_{esc}^2} \right) e^{-A_N^2} \right]$

Probability a DM particle is captured after N collisions

Capture Rates when $v_{esc} \gg \bar{v}$ and $m_X \gg m_p$

$$C_{tot} = \sum_{N=1}^{\infty} C_N = \sqrt{24\pi} G M_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_N R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_N R_{\star} R_{\star} \frac{\rho_X}{m_X \bar{v}} \sum_{N=1}^{\infty} R_N R_{\star} R_{\star}$$

PHENO21

DM bounds from POPIII stars **Cosmin lie** <u>cilie@colgate.edu</u>

 $p_{N}(\tau) \left(1 - \left(1 + \frac{2A_{N}^{2}\bar{v}^{2}}{3v_{esc}^{2}} \right) e^{-A_{N}^{2}} \right)$ $3Nm_p v_{esc}^2$ A_N^2 $m_X \bar{v}^2$

Analytic estimates of Capture Rates

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

PHENO21

- 1.0 - 0.8 **↓** 0.6 Ų - 0.4 \mathbf{O} - 0.2 7.5 12.5 10.0 15.0

Analytic estimates of Capture Rates

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

PHENO21

Analytic estimates of Capture Rates

PHENO21

1.0 - 0.8 - 0.6 ບັ $C_{tot} \sim -$ - 0.4 \mathbf{O} - 0.2 7.5 10.0 12.5 15.0

DM bounds from POPIII stars **Cosmin Ilie** <u>cilie@colgate.edu</u>

Evaporation Rates for n=3 Polytropes

- We use the DM evaporation formalism of Gould ApJ 321(1987) and apply it to n=3 polytropes
- To calculate the captured DM temperature we use the Spergel & Press ApJ 294 (1985) formalism

$$E \approx \frac{3V_{\star} \cdot \bar{n}_{p} \cdot u_{c} \cdot \sigma}{2V_{1}\sqrt{\pi}} e^{-\frac{v_{esc}^{2}\mu}{u_{c}^{2}\Theta}(1+\xi_{1}/2)}$$

PHENO21

Summary

- PopIII stars can be very powerful DM probes
- If one assumes a DM density we can place bounds on DM-proton cross section
- If Direct detection experiments pin down the cross section we can use our method to constrain DM density at location of the first stars
- For sub GeV DM, even if evaporation is significant we can still place competitive bounds on σ with PopIII stars
- We find useful analytic approximations of the DM capture rates and evaporation rates (for n=3) **Polytropes**)

