Detecting Dark Matter with Far-Forward Emulsion and Liquid Argon Detectors at the LHC

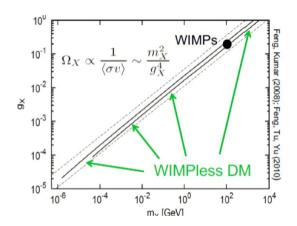
Sebastian Trojanowski

(strojanowski@camk.edu.pl)
AstroCeNT, Nicolaus Copernicus Astronomical Center
Polish Academy of Sciences

Phenomenology 2021 Symposium May 24, 2021

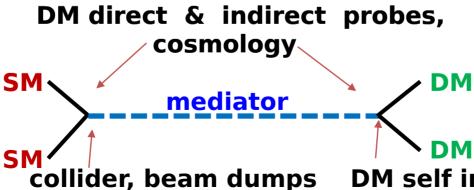
ASTROCENT

B. Batell, J.L. Feng, ST, Phys.Rev.D 103 (2021) 7, 075023 B. Batell, J.L. Feng, A. Ismail, F. Kling, R.M. Abraham, ST, In preparation



Light thermal relic dark matter

Light BSM sector can naturally contain a DM candidate χ


C. Boehm, P. Fayet, hep-ph/0305261M. Pospelov, A. Ritz, M. B. Voloshin, hep-ph/0711.4866J. L. Feng and J. Kumar, hep-ph/0803.41960803.4196

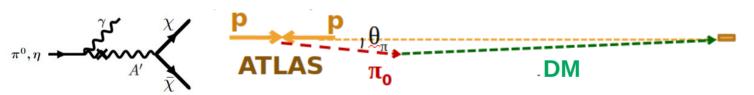
- Correct thermal light DM relic density ("WIMPless" miracle)
- Efficient DM annihilation in the early Universe
 - + various experimental probes

Talks: Knut Moraa Joseph Bramante Natalia Toro

...

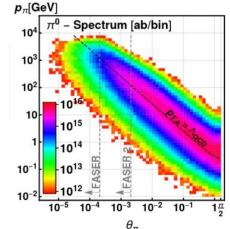
THIS STUDY collider
DM direct detection

DM self interactions


(e.g. long-lived mediators → SM, missing energy/momentum)

Light DM at the LHC

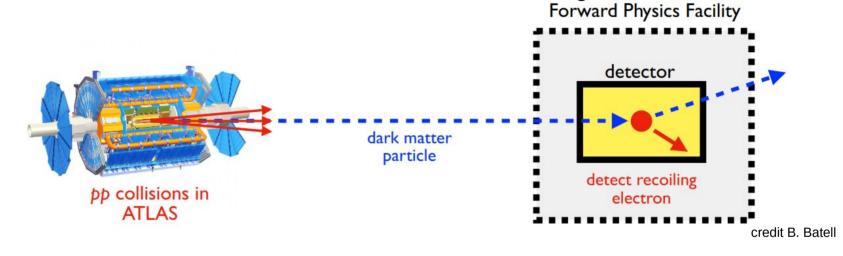
- LHC can be a very efficient light DM (LDM) factory
- LDM direct detection requires suppressing SM backgrounds difficult in typical LHC experiments


...but many LDM particles will go down the beam pipe (especially high energy ones)

Example: DM production in rare decays of light mesons

other prod. modes include i.a. proton-proton bremsstrahlung

$$pp \rightarrow pp(A' \rightarrow \chi\chi)$$


FASER Collaboration, hep-ph/1811.12522, hep-ex/1908.02310

• Far-forward search for light long-lived particles and studies of high-energy neutrino interactions to be initiated during Run 3 with FASER and FASERv detectors

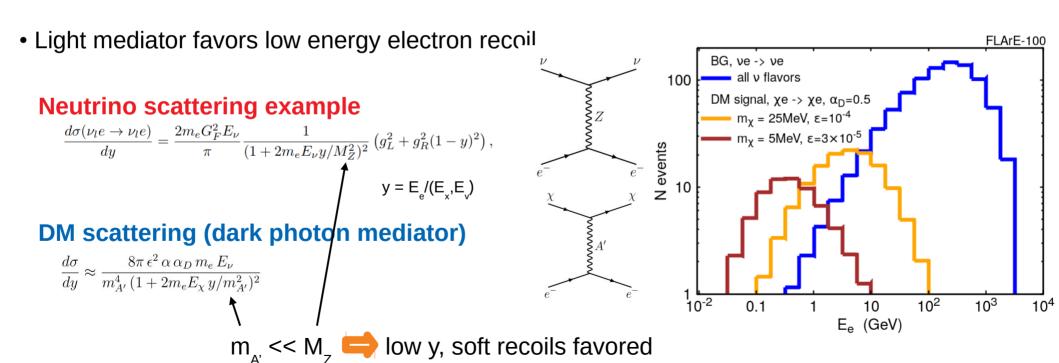
Direct light DM detection at the LHC

We focus on LDM particles produced in the far-forward region of the LHC

& their scattering in a distance detector

- This search is highly complementary to the traditional DM direct detection searches:
- probe of relativistic interaction rates of LDM (DM energy ~ a few hundred GeV)

[collider-boosted DM]


– the search is not sensitive to the precise abundance of χ DM component

(possible variations in cosmological scenario)

[collider-produced DM]

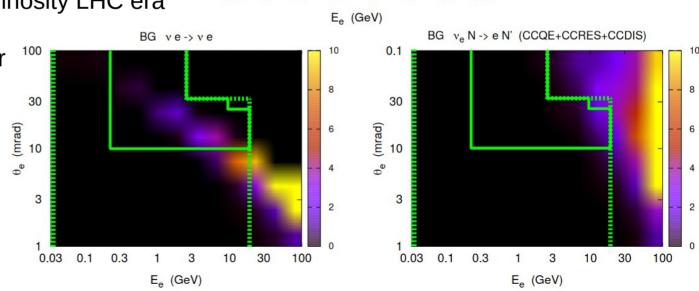
Example signature: DM scattering off electrons

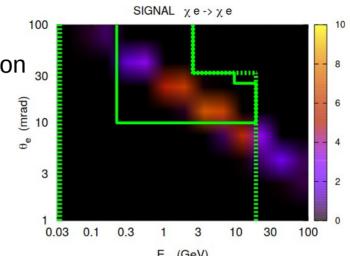
• Signature: recoiled electron (recoil energy \boldsymbol{E}_{e} , recoil angle $\boldsymbol{\theta}_{e}$ wrt to the beam collision axis)

Aditional cuts

• angular cuts can further improve discrimination $_{_{30}}$ between DM and v-induced backgrounds $_{_{\overline{\mathfrak{D}}}}$

such backgrounds can be reduced to

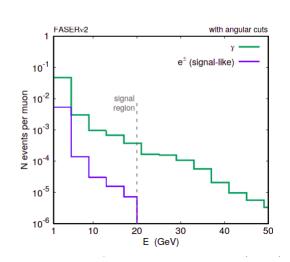

~10 events for the 10-tonne detector


~100 events for the 100-tonne detector

for the entire future High-Luminosity LHC era

 this depends on the detector type and geometry

 angular info also used to identify events associated with pp collisions at the distant Interaction Point



Muon-induced backgrounds

- The LHC is also the muon factory
- Most of muons are deflected by the LHC magnets so that they never reach far-forward detectors...
- ...but the remaining number of expected through-going muons is huge $N_{_{_{I}}}\sim10^{11}$ for HL-LHC and the far-forward detector with radius~1m (on axis)
- they can be further def $h_B \approx \frac{ecd}{E_\mu} B\ell = 60 \text{ cm} \left[\frac{100 \text{ GeV}}{E_\mu} \right] \left[\frac{d}{200 \text{ m}} \right] \left[\frac{B \cdot \ell}{\text{T} \cdot \text{m}} \right]$

• the most energetic muons can avoid deflection and be source of backgrounds

 $\mu N \rightarrow \mu N \gamma$ (photon brem.) + $\gamma N \rightarrow e^+e^-N$ (pair prod.)

Example signature 2: Elastic DM scatterings of protons

• elastic scatterings off protons $\chi p \to \chi p$ can lead to DM detection via observation of a single proton track

FASER-LAr100

again DM with light vector mediator favors low proton recoils

 $\alpha_{D}=0.5, m_{A'}=3 m_{\chi}$

BG can be suppressed to few tens of events for 10-tonne detectors up to few-hundred for 100-tonne detector

- both for DM signal and ν -induced BG important impact of final-state interactions (FSI) of the proton before it leaves the nucleus
- further signatures: DM DIS events, resonant pion production

p_nmax (GeV)

Detectors for HL-LHC

• Convenient location: Forward Physics Facility (FPF) – tunnel to host several far-forward experiments

Parallel talk on Tue: Felix Kling

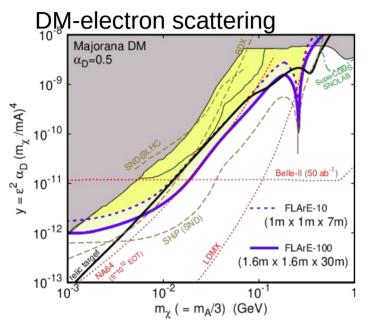
Considered detector types:

FASER Collaboration,

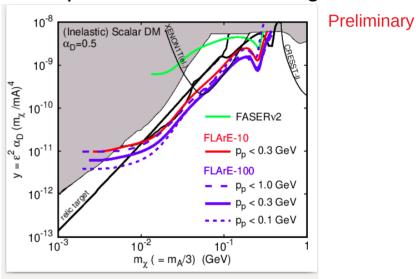
emulsion detector FASERv2 (50cm x 50cm x 200 cm)
 Similar detection strategies to be tested during Run 3: FASERv (1908.02310, 2001.03073), SND@LHC (2002.08722)
 Consists of layers of emulsion films interleaved with tungsten plates + electronic tracker layers for timing Requirements: good soft track reconstruction and readout in presence of numerous muon tracks

Forward Liquid Argon Experiment (FLArE-10 tonne: 1m x 1m x 7m, FLArE-100 tonne: 1.6m x 1.6m x 30m)
Similar to MicroBooNE, ...

Liquid-Argon time projection chamber (TPC) + PMTs to collect scintillation light


Dynamical time information

Requirements: larger space, well-shielded place FPF

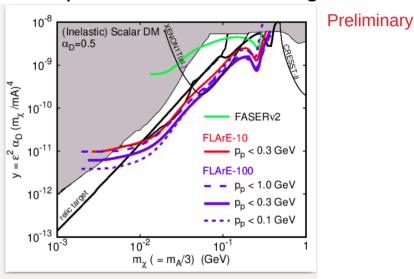

• Sample results for two benchmark models: dark photon mediator & Majorana or (inelastic) complex scalar DM

$$\mathcal{L} \supset A'_{\mu} \left(\epsilon \, e \, J_{EM}^{\mu} + g_D \, J_D^{\mu} \right) \qquad \mathcal{L} \supset \begin{cases} |\partial_{\mu} \chi|^2 - m_{\chi}^2 |\chi|^2 & \text{(complex scalar DM)} \\ \frac{1}{2} \overline{\chi} i \gamma^{\mu} \partial_{\mu} \chi - \frac{1}{2} m_{\chi} \overline{\chi} \chi & \text{(Majorana fermion DM)} \end{cases} \qquad J_D^{\mu} = \begin{cases} i \chi^* \overleftrightarrow{\partial_{\mu}} \chi & \text{(complex scalar DM)} \\ \frac{1}{2} \overline{\chi} \gamma^{\mu} \gamma^5 \chi & \text{(Majorana fermion DM)} \end{cases}.$$

Sensitivity reach for FLArE



DM-proton elastic scattering



- both for Majorana and Scalar DM relic target can be probed during HL-LHC already by the 10-tonne detector FLArE-10
- complementary search strategies based on leptonic and hadronic DM couplings
- possibility to directly detect DM interactions

Sensitivity reach for FASERv2

- DM-electron scattering search with similar prospects to FLArE-10 (provided than μ -induced BG is rejected)
- DM-proton scattering suffers from larger background and smaller signal rates: impact of larger energy threshold and possible misreconstruction of v-induced BG events

Concluding remarks

- LHC can be a light DM factory, most of high-energy such dark species will go down the beam pipe and avoid detection
- DM direct detection in the far-forward LHC liquid-argon or emulsion detectors can probe important relic targets via scatterings off electron or nuclei during HL-LHC (Majorana, Inelastic scalar)
- Direct detection based on relativistic DM interactions complementary to traditional searches
- Backgrounds from neutrino and muon interactions (dynamical vetoing + cuts to disentangle from DM signal)
- Rich neutrino physics program is also envisioned
- Scattterings can also lead to good detection strategies for some very long-lived new particles, see e.g. such study for HNL with dark vector portal K. Jodłowski, ST, 2011.04751 (JHEP)

(VERY) SCHEMATIC FAR-FORWARD DETECTOR CAPABILITIES

Current bounds Secondary (1911.11346)

Secondary production (1911.11346, 2011.04751)

Search for LLP decays FASER(2): 1708.09389, 1811.12522...

SND@LHC: 2104.09688

Anomalies (g-2), 7, DM mediators

Scattering detectors: FASERv(2), SND@LHC, FLArE 1908.02310, 2001.03073, 2002.08722, 2101.10338

DM, v physics, very long-lived new particles

fs ps ns µs lifetime (sub-GeV particles)